
KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Suite	B	Cryptographic	Module	
FIPS	140-2	Non-Proprietary	Security	Policy	

	
	 Revision:		 1.2	
	
	 Prepared	by:		 KeyW	Corporation	
	 7880	Milestone	Parkway	
	 Suite	100	
	 Hanover,	MD	21076	
	 410-904-5200		Phone	
	 410-799-3479		Fax	

	 	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	2	of	44	
		

Contents	
Revision	History	..	4	

Acronyms	..	5	

1.	 Introduction	..	7	

1.1.	 Identification	..	7	

1.2.	 Overview	..	7	

1.3.	 FIPS	140-2	Security	Levels	..	7	

2.	 Suite	B	Cryptographic	Module	..	8	

2.1.	 Cryptographic	Module	Specification	..	8	

2.1.1.	 Security	Functions	...	8	

2.1.2.	 Modes	of	Operation	..	13	

2.1.3.	 Cryptographic	Boundary	...	13	

2.1.4.	 Determining	Module	Version	..	14	

2.2.	 Cryptographic	Module	Ports	and	Interfaces	..	14	

2.3.	 Roles,	Services,	and	Authentication	...	14	

2.3.1.	 Roles	..	14	

2.3.2.	 Services	...	15	

2.3.3.	 Authentication	..	27	

2.4.	 Finite	State	Model	..	27	

2.5.	 Physical	Security	...	27	

2.6.	 Operational	Environment	..	28	

2.7.	 Cryptographic	Key	Management	...	28	

2.7.1.	 Key	Zeroization	..	36	

2.8.	 Electromagnetic	Interference	and	Compatibility	...	36	

2.9.	 Self-Tests	..	37	

2.9.1.	 Invoking	Self-Tests	..	41	

2.9.2.	 Self-Tests	Results	..	41	

2.10.	 Design	Assurance	...	42	

2.11.	 Mitigation	of	Other	Attacks	...	42	

3.	 Referenced	Documents	...	43	

	
	 	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	3	of	44	
		

Tables	and	Figures	
Table	1	–	Summary	of	Achieved	FIPS	140-2	Security	Levels	...	7	
Table	2	–	FIPS-Approved	and	Vendor-Affirmed	Security	Functions	...	12	
Table	3	–	FIPS	Non-Approved	but	Allowed	Security	Functions	..	12	
Figure	1	–	Module	Cryptographic	Boundary	..	13	
Table	4	–	Module	Logical	Interfaces	...	14	
Table	5	–	Module	Services	for	Cryptographic	Officer	Role	...	15	
Table	6	–	Module	Services	for	User	Role	..	27	
Table	7	–	Module	Authentication	...	27	
Table	8	–	Operational	Environments	..	28	
Table	9	–	Module	Cryptographic	Keys	and	Critical	Security	Parameters	...	36	
Table	10	–	Module	Power-On	Self-Tests	..	40	
Table	11	–	Module	Conditional	Self-Tests	..	41	
Table	12	–	Module	Self-Test	Error	Codes	...	42	
	

	 	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	4	of	44	
		

Revision	History	 	
Revision	 Date	 Author	 Changes	
1.2	 February	9,	2017	 A.	Seaman	

D.	Mackie	
C.	Constantinescu	
D.	Brown	

Revised:	Section	2.1.1,	Section	2.1.1.1,	
Figure	1,	and	Table	9	

1.1	 January	6,	2017	 A.	Seaman	
D.	Mackie	
C.	Constantinescu	
D.	Brown	

Added	Security	Functions	

1.0	 July	11,	2014	 R.	Glenn	
D.	Mackie	
C.	Constantinescu	
D.	Wolff	
E.	Hufford	

Initial	Release	

	
	 	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	5	of	44	
		

Acronyms	
AAD Additional Authentication Data
AES Advanced Encryption Standard
AESAVS Advanced Encryption Standard Algorithm Validation Suite
ANS American National Standard
API Application Programming Interface
CAVP Cryptographic Algorithm Validation Program
CBC Cipher Block Chaining
CDH Cofactor Diffie-Hellman
CM Cryptographic Module
CMAC CBC Message Authentication Code
CMACVS CBC Message Authentication Code Validation System
CSP Critical Security Parameters
CT Ciphertext
CTR Counter
CVL Component Validation List
DAR Data At Rest
DEP Default Entry Point
DIT Data In Transit
DKM Derived Keying Material
DLL Dynamic Link Library
DOC Department of Commerce
DPI Double-Pipeline Iteration
DPK Data Protection Key
DRBG Deterministic Random Bit Generator
DUNS Data Unit Sequence Number
EC Elliptic Curve
ECB Electronic CodeBook
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Diffie-Hellman
ECDSA Elliptic Curve Digital Signature Algorithm
ECDSA2VS Elliptic Curve Digital Signature Algorithm Validation System
EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
FB Feedback
FFC Finite Field Cryptography
FIPS Federal Information Processing Standard
FSM Finite State Model
GCM Galois/Counter Mode
GCMVS Galois/Counter Mode Validation System
GMAC Galois Message Authentication Code
GPC General-purpose Computer
HMAC Keyed-hash Message Authentication Code

 HMACVS Keyed-hash Message Authentication Code Validation System
I/O Input/Output
IAW In Accordance With
IETF Internet Engineering Task Force
IV Initialization Vector
KAS Key Agreement Scheme
KASVS Key Agreement Schemes Validation System
KAT Known Answer Test
KBKDF Key-Based Key Derivation Function
KBKDFVS Key-Based Key Derivation Function Validation System
KC Key Confirmation
KDF Key Derivation Function

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	6	of	44	
		

KW Key Wrap
KWP Key Wrap With Padding
KWVS Key Wrap Validation System
LED Light Emitting Diode
MAC Message Authentication Code
MK Master Key
MQV Menezes-Qu-Vanstone
NIST National Institute of Standards and Technology
OS Operating System
PBKDF Password-Based Key Derivation Function
PKV Public Key Validation
POST Power-On Self-Test
PRF Pseudo-Random Function
PT Plaintext
RAM Random Access Memory
RBG Random Bit Generator
RFC Request For Comments
S/MIME Secure/Multipurpose Internet Mail Extensions
SHA Secure Hash Algorithm
SHAVS Secure Hash Algorithm Validation System
SHS Secure Hash Standard
SO Shared Object
SP Special Publication
SSL Secure Sockets Layer
TLS Transport Layer Security
USB Universal Serial Bus
USSOCOM United States Special Operations Command
VS Validation Specification
XTS XEX Tweakable Block Cipher with Ciphertext Stealing
XTSVS XTS Validation System

	 	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	7	of	44	
		

1. Introduction	

1.1. Identification	
The	following	information	identifies	this	document:	
	

• Title:	Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
• Version:	1.2	

1.2. Overview	
KeyW	Corporation,	in	coordination	with	the	United	States	Special	Operations	Command	(USSOCOM),	
has	developed	a	Federal	Information	Processing	Standard	(FIPS)	140-2	Level	1	validated,	standards-
based	Suite	B	Cryptographic	Module	that	provides	an	advanced	layer	of	encrypted	Data	In	Transit	(DIT)	
communications	and	Data	At	Rest	(DAR)	encryption	via	an	Application	Programming	Interface	(API).	

The	Suite	B	Cryptographic	Module,	hereafter	collectively	referred	to	as	the	Module,	operates	as	one	of	
several	layers	of	platform	encryption.		The	platform	encryption	can	be	invoked	automatically	when	the	
Module	is	initialized,	providing	an	additional	layer	of	encryption	and	obfuscation	above	the	Module.		
Additional	encryption	at	the	application	layer	can	be	added	by	enabling	S/MIME	encryption	on	emails,	
content	protection	encryption	on	shared	data,	and	SSL/TLS	encryption	on	web	traffic.	

1.3. FIPS	140-2	Security	Levels	
The	Module	meets	the	overall	requirements	applicable	to	Level	1	security	for	FIPS	140-2	as	shown	in	the	
table	below:	

#	 FIPS	140-2	Section	 Level	
2.1	 Cryptographic	Module	Specification	 1	
2.2	 Cryptographic	Module	Ports	and	Interfaces	 1	
2.3	 Roles,	Services,	and	Authentication	 1	
2.4	 Finite	State	Model	 1	
2.5	 Physical	Security	 N/A	
2.6	 Operational	Environment	 1	
2.7	 Cryptographic	Key	Management		 1	
2.8	 EMI/EMC	 1	
2.9	 Self-Tests	 1	
2.10	 Design	Assurance	 1	
2.11	 Mitigation	of	Other	Attacks	 N/A	

Overall	Level	 1	

Table	1	–	Summary	of	Achieved	FIPS	140-2	Security	Levels	

	 	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	8	of	44	
		

2. Suite	B	Cryptographic	Module	
The	Module	meets	the	requirements	of	the	FIPS	140-2	Security	Level	1	specification	and	provides	the	
following	cryptographic	services:		
	

• Data	encryption	and	decryption	
• Key	encryption	and	decryption	
• Message	digest	and	authentication	code	generation	
• Digital	signature	generation	and	verification	
• Elliptic	curve	key	agreement	
• Key	derivation	

2.1. Cryptographic	Module	Specification	

2.1.1. Security	Functions	
The	Module	is	implemented	entirely	in	software	and	contains	the	following	FIPS-approved	and	FIPS	non-
approved,	but	allowed	security	functions:	
	

Algorithm	 Use	 Specification	 Mode	/	Key	Size	 CAVP	
Specification	

CAVP	
Certificate	

AES	 Block	Cipher	 FIPS	
197,	
Nov	
2001	
(Ref.	
[1])	

NIST	SP	800-
38A,	Dec	
2001	(Ref.	
[2])	

ECB-128	 AESAVS,	Nov	
2002	(Ref.	
[16])	

#3328	
ECB-192	
ECB-256	
CBC-128	 #4312	
CBC-192	
CBC-256	

NIST	SP	800-
38B,	May	
2005	(Ref.	
[3])	

CMAC-128	 CMACVS,	
Aug	2011	
(Ref.	[17])		

#4312	
CMAC-192	
CMAC-256	

NIST	SP	800-
38D,	Nov	
2007	(Ref.	
[4])	

GCM-128	
GMAC-128	

GCMVS,	Aug	
2012	(Ref.	
[18])		

#3328	

GCM-192	
GMAC-192	
GCM-256	
GMAC-256	

NIST	SP	800-
38E,	Jan	2010	
(Ref.	[5])	

XTS-128	 XTSVS,	Sep	
2013	(Ref.	
[19])	

#3328	
XTS-256	

Key	Storage	 NIST	SP	800-
38F,	Dec	
2012	(Ref.	
[6])	

KW-128	 KWVS,	Jun	
2014	(Ref.	
[20])	

#3328	
KW-192	
KW-256	

IETF	RFC	
5649,	Aug	
2009	(Ref.	
[7])	

KWP-128	 #3328	
KWP-192	
KWP-256	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	9	of	44	
		

Algorithm	 Use	 Specification	 Mode	/	Key	Size	 CAVP	
Specification	

CAVP	
Certificate	

SHA	 Secure	Hashing	 FIPS	180-4,	Aug	2015	
(Reference	[8])	

SHA-1	(SHA-160)	 SHAVS,	May	
2014	(Ref.	
[21])	

#2761	
SHA-224	
SHA-256	
SHA-384	
SHA-512	
SHA-512/224	
SHA-512/256	

CMAC	 Message	
Authentication	

NIST	SP	800-38B,	
May	2005	(Ref.	[3])	

AES-128	 CMACVS,	
Aug	2011	
(Ref.	[17])		

#4312	
AES-192	
AES-256	

GMAC	 NIST	SP	800-38D,	Nov	
2007	(Ref.	[4])	

AES-128	 GCMVS,	Aug	
2012	(Ref.	
[18])		

#3328	
AES-192	
AES-256	

HMAC	 FIPS	198-1,	July	2008	
(Reference	[9])	

SHA-1	(SHA-160)	 HMACVS,	
July	2012	
(Ref.	[22])	

#2119	
SHA-224	
SHA-256	
SHA-384	
SHA-512	
SHA-512/224	
SHA-512/256	

ECDSA	 Digital	
Signature	
	
Per	NIST	SP	
800-131A,	P-
192	and	SHA-1	
are	no	longer	
considered	
secure	and	
shall	not	be	
used	to	
generate	digital	
signatures	
(Ref.	[14]).	

FIPS	186-4,	July	2013	
(Reference	[12])	

P-192	 SHA-1	
(SHA-160)	

ECDSA2VS,	
Mar	2014	
(Ref.	[24])	

#657	

SHA-224	
SHA-256	
SHA-384	
SHA-512	
SHA-512/224	
SHA-512/256	

P-224	 SHA-1	
(SHA-160)	
SHA-224	
SHA-256	
SHA-384	
SHA-512	
SHA-512/224	
SHA-512/256	

P-256	 SHA-1	
(SHA-160)	
SHA-224	
SHA-256	
SHA-384	
SHA-512	
SHA-512/224	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	10	of	44	
	

Algorithm	 Use	 Specification	 Mode	/	Key	Size	 CAVP	
Specification	

CAVP	
Certificate	

SHA-512/256	
P-384	 SHA-1	

(SHA-160)	
SHA-224	
SHA-256	
SHA-384	
SHA-512	
SHA-512/224	
SHA-512/256	

P-521	 SHA-1	
(SHA-160)	
SHA-224	
SHA-256	
SHA-384	
SHA-512	
SHA-512/224	
SHA-512/256	

ECC	KAS	 Key	
Establishment	

NIST	SP	800-56A	Rev	
2,	May	2013	
(Reference	[15])	

FullUnified	KC	EB	
P-224,	SHA-224	

KASVS,	May	
2014	(Ref.	
[25])	

#55	
	
	FullUnified	KC	EC	

P-256,	SHA-256		
FullUnified	KC	ED	
P-384,	SHA-384		
FullUnified	KC	EE	
P-521,	SHA-512	
FullMQV	KC	EB	
P-224,	SHA-224		
FullMQV	KC	EC	
P-256,	SHA-256		
FullMQV	KC	ED	
P-384,	SHA-384	
FullMQV	KC	EE	
P-521,	SHA-512		

ECC	CDH	
Primitive	

Shared	Secret	
Establishment	

NIST	SP	800-56A	Rev	
2,	May	2013	
(Reference	[15],	
Section	5.7.1.2)	

P-224	 KASVS,	May	
2014	(Ref.	
[25])	

#484	
(CVL)	P-256	

P-384	
P-521	

KBKDF-
CMAC	

Key	Derivation	 NIST	SP	800-108,	Oct	
2009	(Reference	
[10])	

CTR	 CMAC-AES-
128	

KBKDFVS,	Jan	
2016	(Ref.	
[23])	

#116	

CMAC-AES-
192	
CMAC-AES-
256	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	11	of	44	
	

Algorithm	 Use	 Specification	 Mode	/	Key	Size	 CAVP	
Specification	

CAVP	
Certificate	

FB	 CMAC-AES-
128	
CMAC-AES-
192	
CMAC-AES-
256	

DPI	 CMAC-AES-
128	
CMAC-AES-
192	
CMAC-AES-
256	

KBKDF-
HMAC	

Key	Derivation	 NIST	SP	800-108,	Oct	
2009	(Reference	
[10])	

CTR	 HMAC-SHA-1	
(SHA-160)	

KBKDFVS,	Jan	
2016	(Ref.	
[23])	

#116	

HMAC-SHA-
224	
HMAC-SHA-
256	
HMAC-SHA-
384	
HMAC-SHA-
512	

FB	 HMAC-SHA-1	
(SHA-160)	
HMAC-SHA-
224	
HMAC-SHA-
256	
HMAC-SHA-
384	
HMAC-SHA-
512	

DPI	 HMAC-SHA-1	
(SHA-160)	
HMAC-SHA-
224	
HMAC-SHA-
256	
HMAC-SHA-
384	
HMAC-SHA-
512	

PBKDF	 Key	Derivation	 NIST	SP	800-132,	Dec	
2010	(Reference	
[11])	

HMAC-SHA-1	
(SHA-160)	

VS	not	yet	
available	as	
of	Jan.	2017	

Vendor-
Affirmed	

HMAC-SHA-224	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	12	of	44	
	

Algorithm	 Use	 Specification	 Mode	/	Key	Size	 CAVP	
Specification	

CAVP	
Certificate	

	
See	Section	2.1.1.1.	

HMAC-SHA-256	
HMAC-SHA-384	
HMAC-SHA-512	

Table	2	–	FIPS-Approved	and	Vendor-Affirmed	Security	Functions	

Algorithm	 Use	 Specification	 Mode	/	Key	Size	 CAVP	
Specification	

CAVP	
Certificate	

N/A	 N/A	 N/A	 N/A	 N/A	 N/A	

Table	3	–	FIPS	Non-Approved	but	Allowed	Security	Functions	

2.1.1.1. NIST	SP	800-132	Password-Based	Key	Derivation	Function	(PBKDF)	
Per	NIST	SP	800-132,	Recommendation	for	Password-Based	Key	Derivation,	December	2010	(Reference	
[11]),	the	calling	application	is	responsible	for	selecting	which	option	is	used	to	derive	the	Data	
Protection	Key	(DPK)	from	the	Master	Key	and	shall	only	use	keys	derived	from	passwords	in	storage	
applications.		The	Module	API	restricts	the	calling	application	to	select	a	password/passphrase	that	is	at	
least	10	characters	long	in	accordance	with	the	guidelines	in	NIST	SP	800-63-2,	Electronic	Authentication	
Guideline,	August	2013	(Reference	[26])	and	NIST	SP	800-118,	Guide	to	Enterprise	Password	
Management	(Draft),	April	2009	(Reference	[27]).		Acceptable	values	of	other	parameters	used	in	key	
derivation	are	detailed	below.	

PROTOTYPE:	 t_STATUS PBKDF(U8 *MK, U32 MKbytes, const U8 *Pswd, U32 Pbytes,
 const U8 *Salt, U32 Sbytes, U32 Icount);

	
ARGUMENTS:	 MK		 =	pointer	to	a	byte	string	representing	the	output	(derived)	master	key	
	 MKbytes	=	length	of	derived	master	key,	in	bytes	
	 Pswd		 =	input	password,	a	byte	string	
	 Pbytes		 =	password	length	(at	least	10	bytes)	
	 Salt		 =	input	diversification	value,	a	byte	string	
	 Sbytes		 =	Salt	length	(at	least	16	bytes)	
	 Icount		 =	a	large	iteration	count	(determines	how	many	HMAC	iterations	are	used	to	
	 generate	one	block	of	the	MK)	
	
RETURNS: SUCCESS	if	all	input	parameters	are	valid	
	 FAILURE	otherwise	
	
LIMITATIONS:	 MKbytes >= 14
 Pbytes >= 10
 Sbytes >= 16
 Icount >= 1000

																					 The	Counter	value	should	fit	into	one	byte	(i.e. MKbytes	/	DigestLenB < 256)	 		
DESCRIPTION:	
Implements	the	Password-Based	Key	Derivation	Function	(PBKDF),	IAW	NIST	SP	800-132	(Reference	
[11]).		An	appropriate	SHA	environment	(SHA-1,	SHA-224,	SHA-256,	SHA-384	or	SHA-512)	must	be	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	13	of	44	
	

selected	in	advance	using	SHA_TypeSelect().		There	is	neither	a	Validation	System	in	place,	nor	sample	
test	vectors	published	by	CAVP	for	the	PBKDF	algorithm,	as	of	January	2017.	

2.1.2. Modes	of	Operation	
The	Module	must	be	installed	on	the	FIPS	140-2	certified	operational	environment	listed	in	Section	2.6	
manually,	and	once	installed	it	runs	all	algorithms	in	FIPS-approved	mode	since	it	is	explicitly	compiled	
to	only	run	in	FIPS-approved	mode.		There	are	no	algorithms	or	“expanded”	cryptographic	modes	within	
the	Module	that	are	not	FIPS-approved	as	listed	in	Table	2	when	calling	security	functions	in	the	Module	
API.	

The	operational	environment	on	which	the	Module	runs	shall	be	configured	for	FIPS	mode	when	using	a	
FIPS-approved	platform-provided	Deterministic	Random	Bit	Generator	(DRBG)	in	the	following	ways:	

• Windows	Server	OS:	Enable	the	FIPS	compliant	algorithms	mode	via	the	Local	Security	Policy	to	
guarantee	the	Module	generates	FIPS-validated	random	bytes.	

• BlackBerry	OS:	The	Module	confines	its	method	calls	to	only	those	that	have	been	FIPS-
approved	to	guarantee	generating	FIPS-validated	random	bytes.	

2.1.3. Cryptographic	Boundary	
The	physical	boundary	of	the	Module	is	the	physical	boundary	of	the	operational	environment	hardware	
device	that	executes	the	Module	as	shown	in	the	following	figure.		The	following	figure	depicts	a	FIPS-
approved	DRBG	that	is	provided	by	the	operational	environment	cryptographic	Module	listed	in	Section	
2.6	and	therefore	the	Module	is	bound	to	either	the	Windows	Server	OS	cryptographic	Module	or	
BlackBerry	OS	cryptographic	Module.	

	
Figure	1	–	Module	Cryptographic	Boundary	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	14	of	44	
	

2.1.4. Determining	Module	Version	
The	operator	may	determine	the	version	of	the	Module	by	performing	the	following	steps:	
	
Dynamic	Link	Library	(DLL)	Module	Version	
	

1. On	Windows,	right-click	the	KEYWcryptoModule.dll	file	and	select	view	Properties	
2. Select	Details	tab	
3. The	File	version	property	displays	the	KEYWcryptoModule	version	as	v3.0.0.0	

	
Shared	Object	(SO)	Module	Version	
	

1. On	BlackBerry,	run	the	following	console	command:		

objdump -p libKEYWcryptoModule.so.3 | grep SONAME	

2. The	console	displays	the	KEYWcryptoModule	version	as	v3	

2.2. Cryptographic	Module	Ports	and	Interfaces	
The	Module	ports	correspond	to	the	physical	ports	of	the	operational	environment	hardware	device	
that	executes	the	Module:		
	

• USB	devices	[keyboard	and	mouse]	
• Video	devices	[monitors,	screens,	camera,	and	LED]	
• Optical	drives	
• Audio	devices	[speakers,	headset,	and	microphone]	
• Network	devices	[Ethernet	and	Wireless	adapters]	
• Battery	and	power	adapter	

	
The	Module	interfaces	correspond	to	the	Module	API,	which	do	not	interface	across	any	of	the	physical	
ports	of	the	operational	environment.		The	following	table	describes	the	Module	logical	interfaces.	

FIPS	140-2	Interface	 Logical	Interface	
Data	Input	 Input	parameters	of	Module	constructors	

and	function	calls.	
Data	Output	 Output	parameters	of	Module	function	

calls	and	return	values.	
Control	Input	 Module	function	calls.	
Status	Output	 Return	codes	of	Module	function	calls.	

Table	4	–	Module	Logical	Interfaces	

2.3. Roles,	Services,	and	Authentication	

2.3.1. Roles	
The	Module	supports	a	Cryptographic	Officer	and	User	role.		The	Module	does	not	support	a	
maintenance	role.		The	Module	does	not	support	multiple	or	concurrent	operators	and	is	intended	for	
use	by	a	single	operator,	thus	it	always	operates	in	a	single-user	mode	of	operation.	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	15	of	44	
	

2.3.2. Services	
The	services	described	in	the	following	tables	are	available	to	the	operator	roles:	

Cryptographic	Officer	Role	
Service	 Description	 Input/Output	 Return	
Load	Module	 Performs	Module	

initialization	implicitly	by	the	
operational	environment.	

[in]:	DLL/SO	binary	path	
[out]:	VOID	

Pass/Fail	

Power-On	Self-Test	
(POST)	

Performs	software	integrity	
and	cryptographic	self-tests	
implicitly	upon	Module	load.	

[in]:	DLL/SO	binary	path,	
DLL/SO	checksum	path	
[out]:	VOID	

Pass/Fail	

Zeroize	 Performs	HMAC	Integrity	
Checksum	and	Key	
zeroization	implicitly	after	
Module	POST	pass/fail.		The	
HMAC	Integrity	Checksum	
and	Key	may	also	be	zeroized	
by	power-cycling	the	
operational	environment	and	
reloading	the	Module.	

[in]:	HMAC	Integrity	
Checksum,	HMAC	Integrity	
Check	Key	
[out]:	VOID	

VOID	

Unload	Module	 Performs	Module	destruction	
implicitly	by	the	operational	
environment.	

[in]:	VOID	
[out]:	VOID	

VOID	

Table	5	–	Module	Services	for	Cryptographic	Officer	Role	

User	Role	
Service	 Description	 Input/Output	 Return	
Run	Self	Tests	 Performs	cryptographic	self-

tests	for	the	Module.	
[in]:	VOID	
[out]:	VOID	

Pass/Fail	

CM	 Show	Title	 Gets	title	info	for	the	Module.	 [in]:	VOID	
[out]:	VOID	

Title	Info	

Version	Info	 Gets	version	info	for	the	
Module.	

[in]:	VOID	
[out]:	VOID	

Version	Info	

Self	Tests	
Duration	

Get	cryptographic	self-tests	
duration	for	the	Module.	

[in]:	VOID	
[out]:	VOID	

Duration	

AES	 Construct	 Constructs	an	AES	object.	 [in]:	AES	bit	mode,	AES	key	
[out]:	VOID	

AES	object	

Check	Encrypt	
/	Decrypt	
Tables	

Verifies	integrity	of	
encryption/decryption	tables.	

[in]:	VOID	
[out]:	VOID	

Pass/Fail	

ReKey	 Rekeys	an	AES	object	with	
alternate	AES	key.	

[in]:	AES	bit	mode,	AES	key	
[out]:	VOID	

Pass/Fail	

ECB	Encrypt	 Encrypts	PT	data.			 [in]:	PT	buffer,	PT	block	length	
[out]:	CT	buffer	

VOID	

ECB	Decrypt	 Decrypts	CT	data.	 [in]:	CT	buffer,	PT	block	length	
[out]:	PT	buffer	

VOID	

CBC	Encrypt	 Encrypts	PT	data.			 [in]:	PT	buffer,	IV,	PT	block	 VOID	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	16	of	44	
	

User	Role	
Service	 Description	 Input/Output	 Return	

length	
[out]:	CT	buffer	

CBC	Decrypt	 Decrypts	CT	data.	 [in]:	CT	buffer,	IV,	PT	block	
length	
[out]:	PT	buffer	

VOID	

CMAC	
Generate	

Generates	a	Message	
Authentication	Code	(MAC).	

[in]:	PT	data,	PT	length	
[out]:	CMAC	buffer,	CMAC	
length	

VOID	

Key	Wrap	
Encrypt	

Encrypts	PT	keys.	 [in]:	PT	key	buffer,	PT	length,	
Inverse	cipher	flag	
[out]:	CT	key	buffer	

VOID	

Key	Wrap	
Decrypt	

Decrypts	CT	keys.	 [in]:	CT	key	buffer,	CT	length,	
Inverse	cipher	flag	
[out]:	PT	key	buffer	

Pass/Fail	

KDF	
CTR/FB/DPI	

Generates	a	derived	key.	 [in]:	Label/IV,	Label	length,	
Context,	Context	length,	
Counter	length,	Counter	
location	
[out]:	Derived	key,	Derived	
key	length	

Pass/Fail	

Destruct	 Zeroizes	AES	key.	 [in]:	VOID	
[out]:	VOID	

VOID	

GCM	 Construct	 Constructs	a	GCM	object.	 [in]:	AES	bit	mode,	AES	key	
[out]:	VOID	

GCM	object	

ReKey	 Rekeys	a	GCM	object	with	
alternate	AES	key.	

[in]:	AES	bit	mode,	AES	key	
[out]:	VOID	

Pass/Fail	

Encrypt	 Encrypts	PT	data.	 [in]:	Tag	length,	IV,	IV	length,	
PT	buffer,	PT	length,	AAD,	
AAD	length	
[out]:	CT	buffer,	Tag	

Pass/Fail	

Decrypt	 Decrypts	CT	data.	 [in]:	Tag,	Tag	length,	IV,	IV	
length,	CT	buffer,	CT	length,	
AAD,	AAD	length	
[out]:	PT	buffer	

Pass/Fail	

GMAC	
Encrypt	

Generates	a	Message	
Authentication	Code	(MAC).	

[in]:	Tag	length,	IV,	IV	length,	
AAD,	AAD	length	
[out]:	Tag	

Pass/Fail	

GMAC	
Decrypt	

Validates	a	Message	
Authentication	Code	(MAC).	

[in]:	Tag,	Tag	length,	IV,	IV	
length,	AAD,	AAD	length	
[out]:	VOID	

Pass/Fail	

GCM	Destruct	 Zeroizes	AES	key	and	hash	
key	table.	

[in]:	VOID	
[out]:	VOID	

VOID	

XTS	 Construct	 Constructs	an	XTS	object.	 [in]:	AES	bit	mode,	ECB	key,	
Tweak	key,	DUNS	or	Tweak	
value	

XTS	object	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	17	of	44	
	

User	Role	
Service	 Description	 Input/Output	 Return	

[out]:	VOID	
ReKey	 Rekeys	an	XTS	object	with	

alternate	AES	key.	
[in]:	AES	bit	mode,	ECB	key,	
Tweak	key,	DUNS	or	Tweak	
value	
[out]:	VOID	

Pass/Fail	

Encrypt	 Encrypts	PT	data.	 [in]:	AES	bit	mode,	PT	buffer,	
Sector	bit	length,	ECB	key,	
Tweak	key,	DUNS	or	Tweak	
value	
[out]:	CT	buffer	

Pass/Fail	

Decrypt	 Decrypts	CT	data.	 [in]:	AES	bit	mode,	CT	buffer,	
Sector	bit	length,	ECB	key,	
Tweak	key,	DUNS	or	Tweak	
value	
[out]:	PT	buffer		

Pass/Fail	

Destruct	 Zeroizes	AES	key	and	tweak	
value.	

[in]:	VOID	
[out]:	VOID	

VOID	

ECC	 Construct	 Constructs	an	ECC	object.	 [in]:	EC	type,	SHA	type	
[out]:	VOID	

ECC	object	

Type	Select	 Changes	the	EC	and	SHA	
types.	

[in]:	EC	type,	SHA	type	
[out]:	VOID	

Pass/Fail	

Check	Params	 Verifies	EC	parameters.	 [in]:	VOID	
[out]:	VOID	

Pass/Fail	

Is	Point	Affine	 Determines	if	point	is	an	
affine	coordinate.	

[in]:	EC	Affine	Point	
[out]:	VOID	

Pass/Fail	

Is	Point	Valid	 Determines	if	point	has	
correct	order.	

[in]:	EC	Affine	Point	
[out]:	VOID	

Pass/Fail	

Projectify	 Converts	affine	point	to	
projective	point.	

[in]:	EC	Affine	Point	
[out]:	EC	Projective	Point	

VOID	

Affinify	 Converts	projective	point	to	
affine	point.	

[in]:	EC	Projective	Point	
[out]:	EC	Affine	Point	

Pass/Fail	

Compress	 Converts	affine	point	to	
compressed	point.	

[in]:	EC	Affine	Point	
[out]:	EC	Compressed	Point	

VOID	

Decompress	 Converts	compressed	point	
to	affine	point.	

[in]:	EC	Compressed	Point	
[out]:	EC	Affine	Point	

Pass/Fail	

Double	Affine	 Doubles	an	affine	point.	 [in]:	EC	Affine	Point	
[out]:	EC	Affine	Point	

VOID	

Double	
Projective	

Doubles	a	projective	point.	 [in]:	EC	Projective	Point	
[out]:	EC	Projective	Point	

VOID	

Double	
Projective	

Doubles	a	projective	point	in-
place.	

[inout]:	EC	Projective	Point	 VOID	

Add	Affine	 Adds	affine	points.	 [in]:	EC	Affine	Point,	EC	Affine	
Point	
[out]:	EC	Affine	Point	

VOID	

Add	 Adds	projective	points.	 [in]:	EC	Projective	Point,	EC	 VOID	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	18	of	44	
	

User	Role	
Service	 Description	 Input/Output	 Return	

Projective	

	

Projective	Point	
[out]:	EC	Projective	Point	

Multiply	 Multiplies	affine	point	by	a	
scalar.	

[in]:	Scalar,	EC	Affine	Point	
[out]:	EC	Affine	Point	

Pass/Fail	

Multiply	Base	 Multiplies	EC	Base	Point	by	a	
scalar.	

[in]:	Scalar	
[out]:	EC	Affine	Point	

Pass/Fail	

Double	
Multiply	

Multiplies	two	affine	points	
by	two	scalars.	

[in]:	Scalar,	EC	Affine	Point,	
Scalar,	EC	Affine	Point	
[out]:	EC	Affine	Point	

Pass/Fail	

ECDSA	Public	
Key	Gen	

Computes	the	public	ECDSA	
key.	

[in]:	Private	Key	
[out]:	EC	Public	Affine	Point	

Pass/Fail	

ECDSA	
Signature	Gen	

Computes	the	ECDSA	
signature.	

[in]:	Message,	Message	
length,	Private	Key,	Ephemeral	
Key	
[out]:	R	component,	S	
component	

Pass/Fail	

ECDSA	
Signature	
Check	

Verifies	the	ECDSA	signature.	 [in]:	Message,	Message	
length,	R	component,	S	
component,	EC	Public	Affine	
Point	
[out]:	VOID	

Pass/Fail	

ECDSA	
Signature	
Check	Private	

Verifies	the	ECDSA	signature.	 [in]:	Message,	Message	
length,	R	component,	S	
component,	Private	Key	
[out]:	VOID	

Pass/Fail	

Destruct	 Zeroizes	ECC	buffers.	 [in]:	VOID	
[out]:	VOID	

VOID	

FFC	 Construct	 Constructs	a	FFC	object.	 [in]:	VOID	
[out]:	VOID	

FFC	Object	

Ext	Dec	2	Hex	 Converts	an	extended	
precision	("big")	number	
from	decimal	to	binary	
(hexadecimal).	

[in]:	Decimal	string	buffer	
[out]:	Word	buffer,	Word	
buffer	length	

Pass/Fail	

Ext	Hex	2	Dec	 Converts	an	extended	
precision	("big")	number	
from	binary	(hexadecimal)	to	
decimal.	

[in]:	Word	buffer,	Word	buffer	
length	
[out]:	Decimal	string	buffer	

VOID	

Ext	Compare	 Compares	word	buffers.	 [in]:	Buffer	A,	Buffer	B,	Buffer	
A/B	length	
[out]:	VOID	

1:	a	==	b	
2:	A	>	B	
4:	A	<	B	

Ext	Mod	 Reduces	the	a-operand	
modulo	the	n-operand.	

[in]:	a-operand,	a	length,	n-
operand,	n	length	
[out]:	x-operand	

VOID	

Ext	Add	 Multi-precision	Add	routine	 [in]:	a-operand,	b-operand,	 Final	carry	bit	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	19	of	44	
	

User	Role	
Service	 Description	 Input/Output	 Return	

for	unsigned	integers.	 a/b/x	length	
[out]:	x-operand	

Ext	Add	 Multi-precision	Add	routine	
for	unsigned	integers.	

[in]:	b-operand,	b/x	length	
[inout]:	x-operand	

Final	carry	bit	

Ext	Subtract	 Multi-precision	Subtract	
routine	for	unsigned	integers.	

[in]:	a-operand,	b-operand,	
a/b/x	length	
[out]:	x-operand	

Final	borrow	
bit	

Ext	Subtract	 Multi-precision	Subtract	
routine	for	unsigned	integers.	

[in]:	b-operand,	b/x	length	
[inout]:	x-operand		

Final	borrow	
bit	

Ext	Add	
Immed	

Multi-precision	Add	routine	
of	a	single-precision,	signed	
integer	to	a	multi-precision	
unsigned	integer.	

[in]:	b-operand,	b/x	length	
[inout]:	x-operand	

Final	carry	

Ext	Mod	Add	 Multi-precision	modular	Add	
routine	for	unsigned	integers.	

[in]:	a-operand,	b-operand,	n-
operand,	a/b/n/x	length	
[out]:	x-operand	

VOID	

Ext	Mod	Add	 Multi-precision	modular	Add	
routine	for	unsigned	integers.	

[in]:	b-operand,	n-operand,	
b/n/x	length	
[inout]:	x-operand	

VOID	

Ext	Mod	
Subtract	

Multi-precision	modular	
Subtract	routine	for	unsigned	
integers.	

[in]:	a-operand,	b-operand,	n-
operand,	a/b/n/x	length	
[out]:	x-operand	

VOID	

Ext	Mod	
Subtract	

Multi-precision	modular	
Subtract	routine	for	unsigned	
integers.	

[in]:	b-operand,	n-operand,	
b/n/x	length	
[inout]:	x-operand	

VOID	

Ext	Mod	Add	
Immed	

Modular	Add	routine	of	a	
single-precision,	signed	
integer	to	a	multi-precision	
unsigned	integer.	

[in]:	b-operand,	n-operand,	
b/n/x	length	
[inout]:	x-operand	

VOID	

Ext	Shift	Left	 Multi-precision	1-bit	Left	Shift	
routine	for	unsigned	integers.	

[in]:	a-operand,	Carry	bit,	a/x	
length	
[inout]:	x-operand	

Final	carry	

Ext	Shift	Left	 Multi-precision	1-bit	Left	Shift	
routine	for	unsigned	integers.	

[in]:	x	length	
[inout]:	x-operand	

Final	carry	

Ext	Mod	Shift	
Left	

Performs	a	modular	addition	
of	a	long	number	to	itself.	

[in]:	a-operand,	n-operand,	
a/n/x	length	
[out]:	x-operand	

VOID	

Ext	Mod	Shift	
Left	

Performs	a	modular	addition	
of	a	long	number	to	itself.	

[in]:	n-operand,	n/x	length	
[inout]:	x-operand	

VOID	

Ext	Shift	Right	 Multi-precision	1-bit	Right	
Shift	routine	for	unsigned	
integers.	

[in]:	a-operand,	a/x	length	
[out]:	x-operand	

VOID	

Ext	Shift	Right	 Multi-precision	1-bit	Right	
Shift	routine	for	unsigned	
integers.	

[in]:	x	length	
[inout]:	x-operand	

VOID	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	20	of	44	
	

User	Role	
Service	 Description	 Input/Output	 Return	

Ext	Mod	Shift	
Right	

Multi-precision	modular	
divide-by-2	routine	for	
unsigned	integers.	

[in]:	n-operand,	n/x	length	
[inout]:	x-operand	

VOID	

Ext	Shift	Var	 Multi-precision,	multi-bit	Left	
or	Right	Shift	routine	for	
unsigned	integers.	

[in]:	a-operand,	signed	shift	
count,	a/x	length	
[out]:	x-operand	

VOID	

Ext	Shift	Var	 Multi-precision,	multi-bit	Left	
or	Right	Shift	routine	for	
unsigned	integers.	

[in]:	signed	shift	count,	x	
length	
[inout]:	x-operand	

VOID	

Ext	Bin	Mod	
Inverse	

Performs	modular	inversion	
1/a	with	respect	to	a	
modulus	n	(usually	a	prime	
number)	in	multiple	precision	
arithmetic.	

[in]:	a-operand,	n-operand,	
a/n	length	
[out]:	a-inverse-result	

VOID	

Ext	Bin	Mod	
Divide	

Performs	modular	division	
b/a	with	respect	to	a	
modulus	n	(usually	a	prime	
number)	in	multiple	precision	
arithmetic.	

[in]:	b-operand,	a-operand,	n-
operand,	b/a/n	length	
[out]:	ba-dividend-result	

VOID	

Ext	Bin	Mod	
Inverse	v2	

Performs	modular	inversion	
1/a	with	respect	to	a	
modulus	n	(usually	a	prime	
number)	in	multiple	precision	
arithmetic.	

[in]:	a-operand,	n-operand,	
a/n	length	
[out]:	a-inverse-result	

VOID	

Ext	Multiply	 Multi-precision	multiplication	
routine	for	unsigned	integers	
of	the	same	size.	

[in]:	a-operand,	b-operand,	
a/b/x	length	
[out]:	x-operand	

VOID	

Ext	Multiply	 Multi-precision	multiplication	
routine	for	unsigned	integers	
of	different	sizes.	

[in]:	a-operand,	a	length,	b-
operand,	b	length	
[out]:	x-operand	

VOID	

Ext	Mod	
Multiply	

Multi-precision	modular	
Multiply	routine	for	unsigned	
integers.	

[in]:	a-operand,	b-operand,	n-
operand,	a/b/n/x	length	
[out]:	x-operand	

VOID	

Ext	Square	 Multi-precision	squaring	
routine	for	unsigned	integers.	

[in]:	a-operand,	a	length	
[out]:	x-operand	

VOID	

Ext	Mod	
Square	

Multi-precision	modular	
squaring	routine	for	unsigned	
integers.	

[in]:	a-operand,	n-operand,	
a/n/x	length	
[out]:	x-operand	

VOID	

Ext	Divide	 Multi-precision	division	
routine	for	unsigned	integers.	

[in]:	a-operand,	a	length,	n-
operand,	n	length	
[out]:	q-operand,	r-operand	

VOID	

Ext	Mod	
Inverse	

Performs	modular	inversion	
1/a	with	respect	to	a	
modulus	n	(usually	a	prime	
number)	in	multiple	precision	

[in]:	a-operand,	n-operand,	
a/n	length	
[out]:	a-inverse-result	

VOID	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	21	of	44	
	

User	Role	
Service	 Description	 Input/Output	 Return	

arithmetic.	
Ext	Mod	
Divide	

Performs	modular	division	
b/a	with	respect	to	a	
modulus	n	(usually	a	prime	
number)	in	multiple	precision	
arithmetic.	

[in]:	b-operand,	a-operand,	n-
operand,	b/a/n	length	
[out]:	ba-dividend-result	

VOID	

Ext	Sqrt	 Multi-precision	square-root	
routine	for	unsigned	integers.	

[in]:	a-operand,	a	length	
[out]:	sqrt-result	

Pass/Fail	

Ext	Sqrt	v0	 Multi-precision	square-root	
routine	for	unsigned	integers.	

[in]:	a-operand,	a	length	
[out]:	sqrt-result	

Pass/Fail	

Ext	Sqrt	v1	 Multi-precision	square-root	
routine	for	unsigned	integers.	

[in]:	a-operand,	a	length	
[out]:	sqrt-result	

Pass/Fail	

Find	n0	Prime	 Computes	the	Montgomery	
arithmetic	parameter	n0'.	

[in]:	LSW	of	modulus	
[out]:	VOID	

Montgomery	
arithmetic	
parameter	

Mont	Image	
v0	

Computes	the	Montgomery	
Image	(aM)	of	an	unsigned	
integer	a	with	respect	to	a	
modulus	n.	

[in]:	a-operand,	n-operand,	
a/n/x	length	
[out]:	x-operand	

VOID	

Mont	Image	 Computes	the	Montgomery	
Image	(aM)	of	an	unsigned	
integer	a	with	respect	to	a	
modulus	n.	

[in]:	a-operand,	n-operand,	
a/n/x	length	
[out]:	x-operand	

VOID	

Mont	Prod	 Multi-precision	Montgomery	
Product	routine	for	unsigned	
integers.	

[in]:	a-operand,	b-operand,	n-
operand,	LSW	of	modulus,	
a/b/n/x	length	
[out]:	x-operand	

VOID	

Mont	Square	 Multi-precision	Montgomery	
Squaring	routine	for	unsigned	
integers.	

[in]:	a-operand,	n-operand,	
LSW	of	modulus,	a/n/x	length	
[out]:	x-operand	

VOID	

Rev	Mont	
Image	

This	function	converts	a	
multi-precision	integer	from	
Montgomery	representation	
to	binary	(normal)	
representation.	

[in]:	a-operand,	n-operand,	
LSW	of	modulus,	a/n/x	length	
[out]:	x-operand	

VOID	

Mont	Exp	 Multi-precision	Montgomery	
Exponentiation	routine	for	
unsigned	integers.	

[in]:	b-operand,	e-operand,	e	
length,	n-operand,	b/n	length	
[out]:	x-operand		

VOID	

Mont	Mod	
Inverse	

Computes	a_inv	=	1/aop	
(mod	nop)	using	Fermat's	
Little	Theorem.	

[in]:	a-operand,	n-operand,	
a/n	length	
[out]:	a-inverse-result	

VOID	

Mont	Mod	
Sqrt	

Computes	the	square	root	of	
a	multi-precision	operand	(a)	
modulo	a	prime	modulus	(n).	

[in]:	a-operand,	n-operand,	
a/n	length		
[out]:	a-sqrt-result	

Pass/Fail	

Barrett	 Calculates	the	modulus- [in]:	n-operand,	n/x	length	 VOID	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	22	of	44	
	

User	Role	
Service	 Description	 Input/Output	 Return	

Inverse	 dependent	quantity.	 [out]:	x-operand	
Barrett	Mod	
Multiply	

Multi-precision	modular	
multiplication	routine	for	
unsigned	integers.	

[in]:	a-operand,	b-operand,	n-
operand,	u-operand,	a/b/n/x	
length	
[out]:	x-operand	

VOID	

Barrett	Exp	 Multi-precision	
exponentiation	routine	for	
unsigned	integers.	

[in]:	b-operand,	e-operand,	e	
length,	n-operand,	u-operand,	
b/n	length	
[out]:	x-operand	

VOID	

Barrett	Mod	
Inverse	

Computes	a_inv	=	1/aop	
(mod	nop)	using	Fermat's	
Little	Theorem.	

[in]:	a-operand,	n-operand,	
a/n	length	
[out]:	a-inverse-result		

VOID	

Barrett	Mod	
Sqrt	

Computes	the	square	root	of	
a	multi-precision	operand	(a)	
modulo	a	prime	modulus	(n).	

[in]:	a-operand,	n-operand,	
a/n	length		
[out]:	a-sqrt-result	

Pass/Fail	

Probab	Mod	
Sqrt	

General	probabilistic	
algorithm	to	compute	the	
square	root	modulo	a	prime	
number.	

[in]:	a-operand,	n-operand,	
a/n	length		
[out]:	a-sqrt-result	

Pass/Fail	

Probab	Mod	
Sqrt	v2	

General	probabilistic	
algorithm	to	compute	the	
square	root	modulo	a	prime	
number.	

[in]:	a-operand,	n-operand,	
a/n	length		
[out]:	a-sqrt-result	

Pass/Fail	

Probab	Mod	
Sqrt	v1	

General	probabilistic	
algorithm	to	compute	the	
square	root	modulo	a	prime	
number.	

[in]:	a-operand,	n-operand,	
a/n	length		
[out]:	a-sqrt-result	

Pass/Fail	

Probab	Mod	
Sqrt	v0	

General	probabilistic	
algorithm	to	compute	the	
square	root	modulo	a	prime	
number.	

[in]:	a-operand,	n-operand,	
a/n	length		
[out]:	a-sqrt-result	

Pass/Fail	

Jacobi	Symbol	 Computes	the	Jacobi	symbol	
for	an	integer	a	and	an	odd	
modulus	n	

[in]:	a-operand,	n-operand,	
a/n	length	
[out]:	VOID	

1	if	a	in	
QR(n),	else	-
1/0	

Destruct	 Destructs	the	FFC	object.	 [in]:	VOID	
[out]:	VOID	

VOID	

KAS	
ECC	

Construct	 Constructs	a	KAS	ECC	object.	 [in]:	KAS	type,	initiator	id,	
responder	id,	algorithm	id,	
MAC	key	length,	MAC	tag	
length	
[out]:	VOID	

KAS	ECC	
object	

Type	Select	 Changes	the	KAS	type.	 [in]:	KAS	type,	initiator	id,	
responder	id,	algorithm	id,	
MAC	key	length,	MAC	tag	
length	

Pass/Fail	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	23	of	44	
	

User	Role	
Service	 Description	 Input/Output	 Return	

[out]:	VOID	
ECDH	Init	1	 Computes	Phase	1	of	Full	

Unified	Model	on	initiator	
side.	

[in]:	Initiator	ephemeral	
private	key	
[out]:	Initiator	ephemeral	
public	key	

Pass/Fail	

ECDH	Resp	1	 Computes	Phase	1	of	Full	
Unified	Model	on	responder	
side.	

[in]:	Responder	static	private	
key,	Responder	static	public	
key,	Responder	ephemeral	
private	key,	Initiator	static	
public	key,	Initiator	ephemeral	
public	key,	Nonce	
[out]:	Responder	ephemeral	
public	key,	MAC	key,	AES	
initiator/responder	keys,	
Responder	MAC	tag	

Pass/Fail	

ECDH	Init	2	 Computes	Phase	2	of	Full	
Unified	Model	on	initiator	
side.	

[in]:	Initiator	static	private	key,	
Initiator	static	public	key,	
Initiator	ephemeral	private	
key,	Initiator	ephemeral	public	
key,	Nonce,	Responder	static	
public	key,	Responder	
ephemeral	public	key,	
Responder	MAC	tag,	
[out]:	AES	initiator/responder	
keys,	Initiator	MAC	tag	

Pass/Fail	

ECDH	Resp	2	 Computes	Phase	2	of	Full	
Unified	Model	on	responder	
side.	

[in]:	Responder	ephemeral	
public	key,	MAC	key,	Initiator	
ephemeral	public	key,	Initiator	
MAC	tag	
[out]:	VOID	

Pass/Fail	

MQV	
Primitive	

Computes	the	full	form	of	the	
ECC	MQV	primitive.	

[in]:	Initiator	static	private	key,	
Initiator	ephemeral	private	
key,	Initiator	ephemeral	public	
key,	Responder	static	public	
key,	Responder	ephemeral	
public	key	
[out]:	Shared	secret	

Pass/Fail	

MQV	Init	1	 Computes	Phase	1	of	Full	
MQV	Model	on	initiator	side.	

[in]:	Initiator	ephemeral	
private	key	
[out]:	Initiator	ephemeral	
public	key	

Pass/Fail	

MQV	Resp	1	 Computes	Phase	1	of	Full	
MQV	Model	on	responder	
side.	

[in]:	Responder	static	private	
key,	Responder	static	public	
key,	Responder	ephemeral	
private	key,	Initiator	static	

Pass/Fail	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	24	of	44	
	

User	Role	
Service	 Description	 Input/Output	 Return	

public	key,	Initiator	ephemeral	
public	key,	Nonce	
[out]:	Responder	ephemeral	
public	key,	MAC	key,	AES	
initiator/responder	keys,	
Responder	MAC	tag	

MQV	Init	2	 Computes	Phase	2	of	Full	
MQV	Model	on	initiator	side.	

[in]:	Initiator	static	private	key,	
Initiator	static	public	key,	
Initiator	ephemeral	private	
key,	Initiator	ephemeral	public	
key,	Nonce,	Responder	static	
public	key,	Responder	
ephemeral	public	key,	
Responder	MAC	tag,	
[out]:	AES	initiator/responder	
keys,	Initiator	MAC	tag	

Pass/Fail	

MQV	Resp	2	 Computes	Phase	2	of	Full	
MQV	Model	on	responder	
side.	

[in]:	Responder	ephemeral	
public	key,	MAC	key,	Initiator	
ephemeral	public	key,	Initiator	
MAC	tag	
[out]:	VOID	

Pass/Fail	

Destruct	 Destructs	the	KAS	ECC	object.	 [in]:	VOID	
[out]:	VOID	

VOID	

SHA	 Construct	 Constructs	a	SHA	object.	 [in]:	SHA	type	
[out]:	VOID	

SHA	object	

Type	Select	 Changes	the	SHA	type.	 [in]:	SHA	type	
[out]:	VOID	

Pass/Fail	

Proc	Message	 Generates	a	message	digest.	 [in]:	Message,	Message	length	
[out]:	Digest	

VOID	

Proc	Message	 Generates	a	message	digest.	 [in]:	SHA	type,	Message,	
Message	length	
[out]:	Digest	

VOID	

Proc	Init	 Initializes	first	message	digest	
segment.	

[in]:	Message,	Message	length	
[out]:	VOID	

VOID	

Proc	Init	 Initializes	first	message	digest	
segment.	

[in]:	SHA	type,	Message,	
Message	length	
[out]:	VOID	

VOID	

Proc	Update	 Updates	middle	segment	
message	digest	segment.	

[in]:	Message,	Message	length	
[out]:	VOID	

VOID	

Proc	Final	 Generates	final	message	
digest.	

[in]:	Message,	Message	length	
[out]:	Digest	

VOID	

160	Proc	
Message	

Generates	a	message	digest.	 [in]:	Message,	Message	
length,	SHA	mode	
[out]:	Digest	

VOID	

HMAC	Proc	 Generates	a	Keyed-Hash	 [in]:	Message,	Message	 VOID	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	25	of	44	
	

User	Role	
Service	 Description	 Input/Output	 Return	

Message	 Message	Authentication	
Code	(HMAC)	digest.	

length,	key,	key	length	
[out]:	Digest	

HMAC	Proc	
Message	

Generates	a	HMAC	tag.	 [in]:	Message,	Message	
length,	key,	key	length	
[out]:	MAC	tag,	MAC	tag	
length	

VOID	

HMAC	Proc	
Init	

Initializes	first	HMAC	
message	digest	segment.	

[in]:	Message,	Message	
length,	key,	key	length	
[out]:	VOID	

VOID	

HMAC	Proc	
Update	

Updates	middle	HMAC	
segment	message	digest	
segment.	

[in]:	Message,	Message	length	
[out]:	VOID	

VOID	

HMAC	Proc	
Final	

Generates	final	HMAC	
message	digest.	

[in]:	Message,	Message	length	
[out]:	Digest	

VOID	

HMAC	Proc	
Final	

Generates	final	HMAC	
message	digest.	

[in]:	Message,	Message	length		
[out]:	MAC	tag,	MAC	tag	
length	

VOID	

KDF	
CTR/FB/DPI	

Generates	a	derived	key.	 [in]:	Label/IV,	Label	length,	
Context,	Context	length,	
Counter	length,	Counter	
location	
[out]:	Derived	key,	Derived	
key	length	

VOID	

PBKDF	 Generates	a	derived	key	from	
password	and	salt.	

[in]:	Password,	Password	
length,	Salt,	Salt	length,	
iteration	count	
[inout]:	Derived	key	length	
[out]:	Derived	key	

VOID	

Destruct	 Zeroizes	SHA	buffers.	 [in]:	VOID	
[out]:	VOID	

VOID	

Util’s	 Zeroize	 Zeroizes	fixed-size	buffers.	 [inout]:	Buffer	 VOID	
Obfuscate	 Zeroized	fixed-size	buffer	

with	random	data	from	
DRBG.	

[inout]:	Buffer	 VOID	

Word	Str	Clr	 Zeroizes	buffer.	 [in]:	Buffer	length	
[inout]:	Buffer	

VOID	

Word	Str	Cpy	 Copies	buffer.	 [in]:	Input	Buffer,	Buffer	
length	
[out]:	Copied	buffer	

VOID	

Word	Str	Diff	 Differences	buffers.	 [in]:	Buffer	a,	Buffer	b,	a/b	
length	
[out]:	VOID	

Non-zero	
value	
indicates	
difference	

Word	Str	Cmp	 Compares	buffers.	 [in]:	Buffer	a,	Buffer	b,	a/b	
length	

Pass/Fail	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	26	of	44	
	

User	Role	
Service	 Description	 Input/Output	 Return	

[out]:	VOID	
Word	Str	Cmp	
v0	

Compares	buffer	to	zero.	 [in]:	Buffer,	Buffer	length	
[out]:	VOID	

Pass/Fail	

Word	Str	Cmp	
v1	

Compares	buffer	to	zero.	 [in]:	Buffer,	Buffer	length	
[out]:	VOID	

Pass/Fail	

My	Mem	Cmp	
K	

Compares	byte	buffer	to	
byte.	

[in]:	Buffer,	Buffer	length,	byte	
value	
[out]:	VOID	

Pass/Fail	

CleanUp	 Zeroizes	word	buffer	and	
verifies	zeroed.	

[in]:	Buffer	length	
[inout]:	Buffer	

VOID	

CleanUp	 Zeroizes	byte	buffer	and	
verifies	zeroed.	

[in]:	Buffer	length	
[inout]:	Buffer	

VOID	

Words	2	Bytes	 Converts	word	buffer	to	byte	
buffer.	

[in]:	Word	buffer,	Word	buffer	
length	
[out]:	byte	buffer	

VOID	

Bytes	2	Words	 Converts	byte	buffer	to	word	
buffer.	

[in]:	Byte	buffer,	Word	buffer	
length	
[out]:	Word	buffer	

VOID	

DWords	2	
Bytes	

Converts	double	word	buffer	
to	byte	buffer.	

[in]:	DWord	buffer,	DWord	
buffer	length	
[out]:	byte	buffer	

VOID	

Bytes	2	
DWords	

Converts	byte	buffer	to	
double	word	buffer.	

[in]:	Byte	buffer,	DWord	
buffer	length	
[out]:	DWord	buffer	

VOID	

Quick	
Random	Bytes	

Generates	pseudo-random	
bytes	from	DRBG.	

[in]:	Buffer	length	
[out]:	Buffer	

Pass/Fail	

Stristr	 Case-insensitive	substring	
search	

[in]:	Buffer,	search	string	
[out]:	VOID	

Substring	

My	Memi	
Cmp	

Case-insensitive	byte	buffer	
comparison	

[in]:	Buffer	a,	Buffer	b,	a/b	
length	
[out]:	VOID	

Non-zero	
value	
indicates	
difference	

Scan	Hex	Data	 Decodes	a	byte	string	buffer	
into	a	byte	buffer.	

[in]:	String	buffer	
[out]:	Byte	buffer	

Length	of	
byte	buffer	

Scan	Hex	Data	 Decodes	a	byte	string	buffer	
into	a	word	buffer.	

[in]:	String	buffer	
[out]:	Word	buffer	

Length	of	
word	buffer	

Scan	Hex	
Align	Right	

Decodes	a	byte	string	buffer	
into	a	word	buffer	with	right	
alignment.	

[in]:	String	buffer	
[inout]:	Word	buffer	length	
[out]:	Word	buffer	

VOID	

Read	Dec	
Param	

Reads	decimal	parameter	
from	input	file	stream.	

[in]:	Input	file	stream,	Offset	
header	
[out]:	VOID	

Decimal	
parameter	

Scan	Hex	Data	 Decodes	a	byte	string	from	
an	input	stream	into	a	word	
buffer.	

[in]:	Input	file	stream,	Bit	
length,	Offset	header	
[out]:	Word	buffer	

VOID	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	27	of	44	
	

User	Role	
Service	 Description	 Input/Output	 Return	

Scan	Hex	Data	 Decodes	a	byte	string	from	
an	input	stream	into	a	byte	
buffer.	

[in]:	Input	file	stream,	Bit	
length,	Offset	header	
[out]:	Byte	buffer	

VOID	

Scan	Hex	Data	 Decodes	a	byte	string	from	
an	input	stream	into	a	word	
buffer.	

[in]:	Input	file	stream,	Offset	
header	
[out]:	Word	buffer	

Length	of	
word	buffer	

Scan	Hex	
Align	Right	

Decodes	a	byte	string	from	
an	input	stream	into	a	word	
buffer	with	right	alignment.	

[in]:	Input	file	stream,	Word	
buffer	length,	Offset	header	
[out]:	Word	buffer	

Pass/Fail	

Write	Hex	
Data	

Encodes	word	buffer	into	
string	buffer.	

[in]:	String	buffer,	Word	buffer	
length	
[out]:	Word	buffer	

VOID	

Write	Hex	
Data	

Encodes	byte	buffer	into	
string	buffer.	

[in]:	String	buffer,	Byte	buffer	
length	
[out]:	Byte	buffer	

VOID	

Write	Hex	
Data	

Writes	word	buffer	into	
output	stream	as	a	string.	

[in]:	Output	file	stream,	Word	
buffer	length,	Offset	header,	
Skip	zeros	
[out]:	Word	buffer	

VOID	

Write	Hex	
Data	

Writes	byte	buffer	into	
output	stream	as	a	string.	

[in]:	Output	file	stream,	Byte	
buffer	length,	Offset	header	
[out]:	Byte	buffer	

VOID	

Table	6	–	Module	Services	for	User	Role		

2.3.3. Authentication	
The	Module	does	not	support	operator	authentication.		Roles	are	selected	implicitly	based	on	the	
service	performed	by	the	operator.		
	

Role	 Type	of	Authentication	 Authentication	Data	
Cryptographic	Officer	 N/A	 N/A	
User	 N/A	 N/A	

Table	7	–	Module	Authentication	

2.4. Finite	State	Model	
The	Finite	State	Model	(FSM)	describes	the	overall	behavior	and	transitions	the	Module	undergoes	
based	upon	its	current	state	and	commands	received.		The	FSM	was	reviewed	as	part	of	the	overall	FIPS	
140-2	validation.	

2.5. Physical	Security	
The	Module	is	implemented	entirely	in	software,	thus	it	is	not	subject	to	the	FIPS	140-2	Physical	Security	
requirements.		The	operational	environment	that	executes	the	Module	should	be	located	on	
production-grade	equipment	and	is	expected	to	be	secured	by	best	practices.	

	 	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	28	of	44	
	

2.6. Operational	Environment	
The	Module	runs	in	a	single-user	FIPS	140-2	certified	operational	environment	where	each	calling	
application	runs	in	a	virtually	separated,	independent	space	and	is	compatible	with	the	DRBG	on	which	it	
runs	based	upon	configuration.		The	Module	is	implemented	entirely	in	software,	and	for	FIPS	140-2	
purposes,	is	classified	as	multi-chip	standalone	per	the	operational	environment	on	which	it	runs.	

Module	 Operational	Environment	 CMVP	
Certificate	

CAVP	DRBG	
Certificate	

KEYWcryptoModule.dll
Intel	Xeon	E5530	w/		
Microsoft	Windows	Server	2012	R2	(64-bit)	 #2357	 #489,	#523	

libKEYWcryptoModule.so.3	 Qualcomm	Snapdragon	801	w/		
BlackBerry	OS	10.3	 #1578	 #81	

libKEYWcryptoModule.so.3	 Qualcomm	Snapdragon	S4	w/		
BlackBerry	OS	10.3	 #1578	 #81	

Table	8	–	Operational	Environments	

2.7. Cryptographic	Key	Management	
The	following	table	describes	the	cryptographic	keys,	key	components	and	Critical	Security	Parameters	
(CSPs)	utilized	exclusively	by	the	Module.		
	

Key	/	CSP	 Mode	/	
Key/CSP	Size	 Use	 Access	

Type	 Input	/	Output	 Storage	 Destruction	

HMAC	
Integrity	
Check	Key	

SHA-512	 Symmetric	key	
used	for	
Software	
Integrity	
Checksum.	

Crypto	
Officer	
Role:	
Read	&	
Write	

Symmetric	key	
generated	during	
each	Module	
initialization	as	
input	where	a	
new	symmetric	
key	is	generated	
after	each	build.	
See	Section	2.9	
for	more	details	
on	Software	
Integrity	POST.	

Held	in	RAM	
as	plaintext	
temporarily	
for	single-use	
and	is	not	
stored	during	
Module	
initialization.	

Zeroized	
immediately	
after	Module	
initialization	
via	zeroize	
service	from	
Module	API.	

HMAC	
Integrity	
Checksum	
CSP	

SHA-512	 Checksum	CSP	
used	in	
Software	
Integrity	
Checksum.	

Crypto	
Officer	
Role:	
Read	&	
Write	

Checksum	CSP	
entered	as	input	
during	each	
Module	
initialization	
where	a	new	
Checksum	CSP	is	
generated	after	
each	build.	

Held	in	RAM	
as	plaintext	
temporarily	
for	single-use	
and	is	not	
stored	during	
Module	
initialization.	

Zeroized	
immediately	
after	Module	
initialization	
via	zeroize	
service	from	
Module	API.	

AES-ECB	Key		ECB-128	 Symmetric	key	
used	for	

User	
Role:	

Symmetric	key	
entered,	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	ECB-192	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	29	of	44	
	

Key	/	CSP	 Mode	/	
Key/CSP	Size	 Use	 Access	

Type	 Input	/	Output	 Storage	 Destruction	

ECB-256	 encryption	and	
decryption	of	
user	data.	

Read	&	
Write		

established,	or	
generated	by	
operational	
environment	
DRBG	as	input.	

responsible	
for	zeroizing	
symmetric	key	
via	zeroize	
service	from	
Module	API	or	
via	platform-
provided	API.	

AES-CBC	Key	CBC-128	 Symmetric	key	
used	for	
encryption	and	
decryption	of	
user	data.	

User	
Role:	
Read	&	
Write	

Symmetric	key	
entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	plaintext	or	
ciphertext	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
symmetric	key	
via	zeroize	
service	from	
Module	API	or	
via	platform-
provided	API.	

CBC-192	
CBC-256	

AES-CBC	IV	
CSP	

CBC-128	 IV	CSP	used	in	
encryption	and	
decryption	of	
user	data.	

User	
Role:	
Read	&	
Write	

IV	CSP	entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	plaintext	or	
ciphertext	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
IV	CSP	via	
zeroize	service	
from	Module	
API	or	via	
platform-
provided	API.	

CBC-192	
CBC-256	

AES-GCM	
Key	

GCM-128	 Symmetric	key	
used	for	
encryption	and	
decryption	of	
traffic	data.	

User	
Role:	
Read	&	
Write	

Symmetric	key	
entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	plaintext	or	
ciphertext	with	
Tag	as	output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
symmetric	key	
via	zeroize	
service	from	
Module	API	or	
via	platform-
provided	API.	

GCM-192	
GCM-256	

AES-GCM	IV	
CSP	

GCM-128	 IV	CSP	used	in	
encryption	and	
decryption	of	
traffic	data.	

User	
Role:	
Read	&	
Write	

IV	CSP	entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	plaintext	or	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
IV	CSP	via	
zeroize	service	
from	Module	

GCM-192	
GCM-256	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	30	of	44	
	

Key	/	CSP	 Mode	/	
Key/CSP	Size	 Use	 Access	

Type	 Input	/	Output	 Storage	 Destruction	

ciphertext	with	
Tag	as	output.	

API	or	via	
platform-
provided	API.	

AES-XTS	
Keys	

XTS-128	 Symmetric	keys	
used	for	
encryption	and	
decryption	of	
stored	data.	

User	
Role:	
Read	&	
Write	

Symmetric	keys	
entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	plaintext	or	
ciphertext	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
symmetric	
keys	via	
zeroize	service	
from	Module	
API	or	via	
platform-
provided	API.	

XTS-256	

AES-XTS	
Tweak	Value	
CSP	

XTS-128	 Tweak	value	
CSP	used	in	
encryption	and	
decryption	of	
stored	data.	

User	
Role:	
Read	&	
Write	

Tweak	value	CSP	
entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	plaintext	or	
ciphertext	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
Tweak	value	
CSP	via	
zeroize	service	
from	Module	
API	or	via	
platform-
provided	API.	

XTS-256	

AES-
KW/KWP	
Key	

KW-128	 Symmetric	key	
used	for	
encryption	and	
decryption	of	
other	keys.	

User	
Role:	
Read	&	
Write	

Symmetric	key	
entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	plaintext	or	
ciphertext	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
symmetric	key	
via	zeroize	
service	from	
Module	API	or	
via	platform-
provided	API.	

KW-192	
KW-256	
KWP-128	
KWP-192	
KWP-256	

CMAC	Key	 AES-128	 Symmetric	key	
used	for	
message	
authentication.	

User	
Role:	
Read	&	
Write	

Symmetric	key	
entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	MAC	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
symmetric	key	
via	zeroize	
service	from	
Module	API	or	
via	platform-
provided	API.	

AES-192	
AES-256	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	31	of	44	
	

Key	/	CSP	 Mode	/	
Key/CSP	Size	 Use	 Access	

Type	 Input	/	Output	 Storage	 Destruction	

GMAC	Key	 AES-128	 Symmetric	key	
used	for	
message	
authentication.	

User	
Role:	
Read	&	
Write	

Symmetric	key	
entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	MAC	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
symmetric	key	
via	zeroize	
service	from	
Module	API	or	
via	platform-
provided	API.	

AES-192	
AES-256	

GMAC	IV	
CSP	

AES-128	 IV	CSP	used	for	
message	
authentication.	

User	
Role:	
Read	&	
Write	

IV	CSP	entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	MAC	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
IV	CSP	via	
zeroize	service	
from	Module	
API	or	via	
platform-
provided	API.	

AES-192	
AES-256	

HMAC	Key	 SHA-1	(SHA-160)	 Symmetric	key	
used	for	
message	
authentication.	

User	
Role:	
Read	&	
Write	

Symmetric	key	
entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	MAC	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
symmetric	key	
via	zeroize	
service	from	
Module	API	or	
via	platform-
provided	API.	

SHA-224	
SHA-256	
SHA-384	
SHA-512	
SHA-512/224	
SHA-512/256	

ECDSA	Key	 P-192	 SHA-1	
(SHA-160)	

Asymmetric	
key	used	for	
digital	
signature.	
	
Per	NIST	SP	
800-131A,	P-
192	and	SHA-1	
are	no	longer	
considered	
secure	and	
shall	not	be	
used	to	
generate	digital	

User	
Role:	
Read	&	
Write	

Asymmetric	key	
entered	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	digital	
signature	scalars	
computed	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
asymmetric	
key	via	zeroize	
service	from	
Module	API	or	
via	platform-
provided	API.	

SHA-224	
SHA-256	
SHA-384	
SHA-512	
SHA-512/224	
SHA-512/256	

P-224	 SHA-1	
(SHA-160)	
SHA-224	
SHA-256	
SHA-384	
SHA-512	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	32	of	44	
	

Key	/	CSP	 Mode	/	
Key/CSP	Size	 Use	 Access	

Type	 Input	/	Output	 Storage	 Destruction	

SHA-512/224	 signatures	
(Ref.	[14]).	SHA-512/256	

P-256	 SHA-1	
(SHA-160)	
SHA-224	
SHA-256	
SHA-384	
SHA-512	
SHA-512/224	
SHA-512/256	

P-384	 SHA-1	
(SHA-160)	

SHA-224	
SHA-256	
SHA-384	
SHA-512	
SHA-512/224	
SHA-512/256	

P-521	 SHA-1	
(SHA-160)	

SHA-224	
SHA-256	
SHA-384	
SHA-512	
SHA-512/224	
SHA-512/256	

ECC	KAS	
Keys	

FullUnified	KC	EB	
P-224,	SHA-224	

Asymmetric	
keys	and	MAC	
keys	used	for	
key	
establishment.	
	
	

User	
Role:	
Read	&	
Write	

Asymmetric	keys	
and	MAC	keys	
entered	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	symmetric	
keys	derived	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
asymmetric/sy
mmetric	keys	
via	zeroize	
service	from	
Module	API	or	
via	platform-
provided	API.	

FullUnified	KC	EC	
P-256,	SHA-256	
FullUnified	KC	ED	
P-384,	SHA-384	
FullUnified	KC	EE	
P-521,	SHA-512	
FullMQV	KC	EB	
P-224,	SHA-224	
FullMQV	KC	EC	
P-256,	SHA-256	
FullMQV	KC	ED	
P-384,	SHA-384	
FullMQV	KC	EE	
P-521,	SHA-512	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	33	of	44	
	

Key	/	CSP	 Mode	/	
Key/CSP	Size	 Use	 Access	

Type	 Input	/	Output	 Storage	 Destruction	

ECC	KAS	
Nonce	&	
MAC	tag	
CSPs	

FullUnified	KC	EB	
P-224,	SHA-224	

Nonce	and	
MAC	tag	CSPs	
used	in	key	
establishment.	

User	
Role:	
Read	&	
Write	

Nonce	and	MAC	
tag	CSPs	entered	
or	generated	by	
operational	
environment	
DRBG	as	input	
and	symmetric	
keys	derived	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
Nonce	and	
MAC	tag	CSPs	
via	zeroize	
service	from	
Module	API	or	
via	platform-
provided	API.	

FullUnified	KC	EC	
P-256,	SHA-256	
FullUnified	KC	ED	
P-384,	SHA-384	
FullUnified	KC	EE	
P-521,	SHA-512	
FullMQV	KC	EB	
P-224,	SHA-224	
FullMQV	KC	EC	
P-256,	SHA-256	
FullMQV	KC	ED	
P-384,	SHA-384	
FullMQV	KC	EE	
P-521,	SHA-512	

ECC	KAS	
Shared	
Secret	&	
DKM	CSPs	

FullUnified	KC	EB	
P-224,	SHA-224	

Shared	Secret	
and	DKM	CSPs	
derived	during	
key	
establishment.	

User	
Role:	
N/A	

Shared	Secret	
and	DKM	CSPs	
derived	as	output	
between	KAS	
phases.	

Held	in	RAM	
as	plaintext	
temporarily	
for	single-use	
and	is	not	
stored	
between	KAS	
phases.	

Zeroized	
immediately	
between	KAS	
phases	via	
zeroize	service	
from	Module	
API.	

FullUnified	KC	EC	
P-256,	SHA-256	
FullUnified	KC	ED	
P-384,	SHA-384	
FullUnified	KC	EE	
P-521,	SHA-512	
FullMQV	KC	EB	
P-224,	SHA-224	
FullMQV	KC	EC	
P-256,	SHA-256	
FullMQV	KC	ED	
P-384,	SHA-384	
FullMQV	KC	EE	
P-521,	SHA-512	

ECC	CDH	
Primitive	
Keys	

P-224	 Asymmetric	
keys	used	for	
shared	secret	
CSP	
establishment.	

User	
Role:	
Read	&	
Write	

Asymmetric	keys,	
entered	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	shared	
secret	CSP	
derived	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
asymmetric	
keys	via	
zeroize	service	
from	Module	
API	or	via	
platform-
provided	API.	

P-256	
P-384	
P-521	

ECC	CDH	
Primitive	

P-224	 Shared	secret	
CSPs	derived	

User	
Role:	

Shared	secret	
CSP	derived	as	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	P-256	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	34	of	44	
	

Key	/	CSP	 Mode	/	
Key/CSP	Size	 Use	 Access	

Type	 Input	/	Output	 Storage	 Destruction	

Shared	
Secret	CSPs	

P-384	 from	
establishment.	

Read	&	
Write	

output	when	
asymmetric	keys	
entered	or	
generated	by	
operational	
environment	
DRBG	as	input.	

responsible	
for	zeroizing	
shared	secret	
CSPs	via	
zeroize	service	
from	Module	
API	or	via	
platform-
provided	API.	

P-521	

KBKDF-
CMAC-CTR	
Keys	

CMAC-AES-128	 Symmetric	key	
used	for	key	
derivation.	

User	
Role:	
Read	&	
Write	

Symmetric	key	
entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	symmetric	
key	derived	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
symmetric	
keys	via	
zeroize	service	
from	Module	
API	or	via	
platform-
provided	API.	

CMAC-AES-192	
CMAC-AES-256	

KBKDF-
CMAC-FB	
Keys	

CMAC-AES-128	 Symmetric	key	
used	for	key	
derivation.	

User	
Role:	
Read	&	
Write	

Symmetric	key	
entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	symmetric	
key	derived	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
symmetric	
keys	via	
zeroize	service	
from	Module	
API	or	via	
platform-
provided	API.	

CMAC-AES-192	
CMAC-AES-256	

KBKDF-
CMAC-FB	IV	
CSP	

CMAC-AES-128	 IV	CSP	used	in	
key	derivation.	

User	
Role:	
Read	&	
Write	

IV	CSP	entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	symmetric	
key	derived	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
IV	CSP	via	
zeroize	service	
from	Module	
API	or	via	
platform-
provided	API.	

CMAC-AES-192	
CMAC-AES-256	

KBKDF-
CMAC-DPI	
Keys	

CMAC-AES-128	 Symmetric	key	
used	for	key	
derivation.	

User	
Role:	
Read	&	
Write	

Symmetric	key	
entered,	
established,	or	
generated	by	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	

CMAC-AES-192	
CMAC-AES-256	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	35	of	44	
	

Key	/	CSP	 Mode	/	
Key/CSP	Size	 Use	 Access	

Type	 Input	/	Output	 Storage	 Destruction	

operational	
environment	
DRBG	as	input	
and	symmetric	
key	derived	as	
output.	

symmetric	
keys	via	
zeroize	service	
from	Module	
API	or	via	
platform-
provided	API.	

KBKDF-
HMAC-CTR	
Keys	

HMAC-SHA-1	
(SHA-160)	

Symmetric	key	
used	for	key	
derivation.	

User	
Role:	
Read	&	
Write	

Symmetric	key	
entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	symmetric	
key	derived	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
symmetric	
keys	via	
zeroize	service	
from	Module	
API	or	via	
platform-
provided	API.	

HMAC-SHA-224	
HMAC-SHA-256	
HMAC-SHA-384	
HMAC-SHA-512	

KBKDF-
HMAC-FB	
Keys	

HMAC-SHA-1	
(SHA-160)	

Symmetric	key	
used	for	key	
derivation.	

User	
Role:	
Read	&	
Write	

Symmetric	key	
entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	symmetric	
key	derived	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
symmetric	
keys	via	
zeroize	service	
from	Module	
API	or	via	
platform-
provided	API.	

HMAC-SHA-224	
HMAC-SHA-256	
HMAC-SHA-384	
HMAC-SHA-512	

KBKDF-
HMAC-FB	IV	
CSP	

HMAC-SHA-1	
(SHA-160)	

IV	CSP	used	in	
key	derivation.	

User	
Role:	
Read	&	
Write	

IV	CSP	entered,	
established,	or	
generated	by	
operational	
environment	
DRBG	as	input	
and	symmetric	
key	derived	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
IV	CSP	via	
zeroize	service	
from	Module	
API	or	via	
platform-
provided	API.	

HMAC-SHA-224	
HMAC-SHA-256	
HMAC-SHA-384	
HMAC-SHA-512	

KBKDF-
HMAC-DPI	
Keys	

HMAC-SHA-1	
(SHA-160)	

Symmetric	key	
used	for	key	
derivation.	

User	
Role:	
Read	&	
Write	

Symmetric	key	
entered,	
established,	or	
generated	by	
operational	
environment	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
symmetric	
keys	via	

HMAC-SHA-224	
HMAC-SHA-256	
HMAC-SHA-384	
HMAC-SHA-512	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	36	of	44	
	

Key	/	CSP	 Mode	/	
Key/CSP	Size	 Use	 Access	

Type	 Input	/	Output	 Storage	 Destruction	

DRBG	as	input	
and	symmetric	
key	derived	as	
output.	

zeroize	service	
from	Module	
API	or	via	
platform-
provided	API.	

PBKDF	
Password	
CSP	

HMAC-SHA-1	
(SHA-160)	

Password	CSP	
used	in	
password-
based	key	
derivation.	

User	
Role:	
Read	&	
Write	

Password	CSP	
entered	by	
calling	
application	as	
input	and	
symmetric	key	
derived	as	
output.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
Password	CSP	
via	zeroize	
service	from	
Module	API	or	
via	platform-
provided	API.	

HMAC-SHA-224	
HMAC-SHA-256	
HMAC-SHA-384	
HMAC-SHA-512	

PBKDF	Key	 HMAC-SHA-1	
(SHA-160)	

Symmetric	key	
derived	from	
password-
based	key	
derivation.	

User	
Role:	
Read	&	
Write	

Symmetric	key	
derived	as	output	
when	Password	
CSP	entered	by	
calling	
application	as	
input.	

Held	in	RAM	
as	plaintext.	

Calling	
application	is	
responsible	
for	zeroizing	
symmetric	key	
via	zeroize	
service	from	
Module	API	or	
via	platform-
provided	API.	

HMAC-SHA-224	
HMAC-SHA-256	
HMAC-SHA-384	
HMAC-SHA-512	

Table	9	–	Module	Cryptographic	Keys	and	Critical	Security	Parameters	

2.7.1. Key	Zeroization	
The	Module	API	leverages	fixed-size	buffer	zeroization	via	memset	and	pseudorandom	buffer	filling.		The	
Cryptographic	Officer	operator	may	request	HMAC	Integrity	Check	Key	zeroization	at	any	time	by	
power-cycling	the	operational	environment	and	reloading	the	Module.		Also,	the	Cryptographic	Officer	
operator	may	manually	uninstall	the	Module	from	the	operational	environment	and	reformat	(i.e.	
overwrite	at	least	once)	the	platform’s	hard	drive	or	other	permanent	storage	media	while	only	
performing	the	procedural	uninstallation	of	the	Module	is	not	an	acceptable	key	zeroization	method.		
The	User	operator	must	zeroize	keys/CSPs	stored	in	the	operational	environment	by	calling	a	zeroize	
service	provided	by	the	Module	API	or	via	platform-provided	API.	

2.8. Electromagnetic	Interference	and	Compatibility	
The	Module	meets	the	requirements	of	the	FIPS	140-2	EMI/EMC	Level	1	specification	as	the	operational	
environment	on	which	the	Module	software	runs	passed	validation	executing	upon	the	general-purpose	
computer	(GPC)	that	confirms	to	the	EMI/EMC	requirements	specific	by	47	Code	of	Federal	Regulations,	
Part	15,	Subpart	B,	Unintentional	Radiators,	Digital	Devices,	Class	A	(i.e.,	for	business	use).	 	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	37	of	44	
	

2.9. Self-Tests	
The	Module	implements	Power-On	Self-Tests	(POST)	and	conditional	self-tests	that	are	described	in	the	
following	tables:	

Test	 Description	
Software	Integrity		 The	Module	validates	its	own	software	integrity	upon	load	of	the	

Module	DLL/SO	file.		The	integrity	check	is	a	two-step	process	
consisting	of	an	HMAC	verification	(based	on	the	FIPS-approved	
HMAC-512	algorithm),	applied	to	the	whole	Module	DLL/SO	image	
processed	as	a	binary	data	file.			
In	the	first	step,	the	512-bit	(64-byte)	HMAC	key	for	the	HMAC	
verification	is	derived	via	a	FIPS-approved	KBKDF	from	several	build-
specific	data	fields	including	the	current	version	string	and	build	date,	
which	are	compiled	into	the	Module	and	are	not	modifiable.		This	
HMAC	key	customization	is	aimed	at	preventing	malicious	Module	
DLL/SO	rebuilds	and	authenticating	the	original	build	only.	
In	the	second	step,	the	512-bit	HMAC	key	is	used	to	perform	an	HMAC-
512	integrity	check	of	the	whole	Module	DLL/SO	image.		This	
computation	produces	a	512-bit	checksum	that	is	compared	against	a	
hexadecimal	value	pre-stored	in	a	properties	file.	

AES	Check	
Encryption/Decryption	
Tables	

Verifies	the	integrity	of	the	pre-built	Sbox	substitution	table	and	
inverse	Sbox	substitution	table.		The	Sbox	substitution	table	is	pre-
converted	to	four	32-bit	tables,	in	order	to	speed	up	AES	encryption	in	
32-bit	processing	mode	while	the	inverse	Sbox	substitution	table	is	
pre-converted	to	four	32-bit	tables,	in	order	to	speed	up	AES	
decryption	in	32-bit	processing	mode.	

GCM	Encrypt/Decrypt	
KAT	

Exercises	a	set	of	Known	Answer	Tests	(KATs)	extracted	from	the	GCM	
test	vectors	published	by	NIST	in	the	GCMVS	specification	(Reference	
[18])	on	all	three	GCM	encryption	modes	corresponding	to	AES	key	
sizes	of	128,	192	and	256	bits	featuring	the	largest	combinations	of	PT,	
IV	and	AAD.	
The	comprehensive	GCM	KATs	implicitly	provide	assurance	about	the	
validity	of	the	underlying	AES	cryptographic	algorithms.	

SHA	KAT	 Exercises	a	set	of	Known	Answer	Tests	(KATs)	extracted	from	the	SHA	
test	vectors	published	by	NIST	in	the	SHAVS	specification	(Reference	
[21])	on	all	SHA	versions	(SHA-1,	SHA-224,	SHA-256,	SHA-384,	SHA-512,	
SHA-512/224	and	SHA-512/256)	specified	in	FIPS	Publication	180-4	
featuring	mixed	hash/digest	size	combinations	with	the	longest	input	
data.	
The	comprehensive	SHA	KATs	implicitly	provide	assurance	about	the	
validity	of	the	Key	Derivation	Function	(KDF)	employed	by	the	ECDH	
Key	Agreement	Scheme	(as	recommended	in	NIST	SP	800-56A	–	
Reference	[15],	a	SHA-based	concatenation	KDF	is	being	used).	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	38	of	44	
	

Test	 Description	
HMAC	KAT	 Exercises	a	set	of	Known	Answer	Tests	(KATs)	extracted	from	the	

HMAC	test	vectors	published	by	NIST	in	the	HMACVS	specification	
(Reference	[22])	featuring	the	largest	combinations	of	key	and	tag	sizes	
covering	all	versions	of	the	underlying	hashing	algorithm	(SHA-1,	SHA-
224,	SHA-256,	SHA-384,	SHA-512,	SHA-512/224	and	SHA-512/256).			
The	comprehensive	HMAC	KATs	implicitly	provide	assurance	about	the	
validity	of	the	Bilateral	Key	Confirmation	method	employed	by	the	
ECDH	Key	Agreement	Scheme	(Reference	[15],	Section	8.4).	

ECDSA	KeyPair/PKV	
KAT	

Exercises	a	set	of	Known	Answer	Tests	(KATs)	adapted	from	the	ECDSA	
KeyPair	(private/public	key	verification)	and	PKV	(Public	Key	Validation)	
test	vectors	published	by	NIST	in	the	ECDSA2VS	specification	
(Reference	[24])	covering	each	version	of	the	underlying	prime-field	EC	
(P-192,	P-224,	P-256,	P-384	and	P-521).			
The	ECDSA	KeyPair	tests	include	multiple	KAT	verifications	of	ECC	point	
multiplication,	which	is	the	ECC	primitive	used	for	shared-secret	(“Z”)	
computation	by	the	ECDH	Key	Agreement	Scheme.	

ECDSA	SigGen	KAT	 Exercises	a	set	of	Known	Answer	Tests	(KATs)	adapted	from	the	SigGen	
test	vectors	published	by	NIST	in	the	ECDSA2VS	specification	
(Reference	[24]).		In	this	test	category,	ECDSA2VS	only	provides	the	
message	to	be	signed.		The	module	generates	a	private	key,	computes	
the	corresponding	public	key,	generates	an	ECDSA	“secret	number”	
(ephemeral	key)	from	the	DRBG,	computes	the	message	signature	
using	the	private	key	and	verifies	the	signature	with	the	public	key.		
For	completeness,	the	signature	is	verified	with	the	private	key	as	well.		
One	long	test	vector	is	exercised	for	each	combination	of	prime	field	
EC	(P-224,	P-256,	P-384	and	P-521)	and	hashing	algorithm	(SHA-224,	
SHA-256,	SHA-384,	SHA-512,	SHA-512/224	and	SHA-512/256).		In	the	
latest	NIST	Suite	B	specifications	P-192	EC	and	SHA-1	are	no	longer	
considered	suitable	for	secure	ECDSA	generation	(Reference	[14]).	

ECDSA	SigVer	KAT	 Exercises	a	set	of	Known	Answer	Tests	(KATs)	adapted	from	the	SigVer	
test	vectors	published	by	NIST	in	the	ECDSA2VS	specification	
(Reference	[24]).		These	test	cases	are	in	compliance	with	the	latest	
ECDSA	specification	(FIPS	186-4,	Reference	[12]),	which	allows	any	
prime-field	EC	(P-192,	P-224,	P-256,	P-384	or	P-521)	to	be	combined	
with	each	SHA	version	from	FIPS	180-4	(SHA-1,	SHA-224,	SHA-256,	
SHA-384,	SHA-512,	SHA-512/224	or	SHA-512/256)	in	an	ECDSA	
computation.		One	test	case	from	each	EC/SHA	combination,	featuring	
the	longest	message,	is	exercised.	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	39	of	44	
	

Test	 Description	
ECDH	Full	Unified	Key	
Agreement	Scheme	
(KAS)	KAT	

Exercises	a	set	of	Known	Answer	Tests	(KATs)	adapted	from	the	ECDH	
test	vectors	published	by	NIST	in	the	KASVS	specification	(Reference	
[25])	featuring	the	Full	Unified	Model	of	ECDH	covering	each	version	of	
the	underlying	prime-field	EC	(P-224,	P-256,	P-384	and	P-521).		Each	
test	run	includes	both	Initiator-side	and	Responder-side	functions.		
The	underlying	cryptographic	algorithms	used	during	ECDH	key	
agreement	are	fully	validated	via	individual	POSTs:	

• ECC	point	multiplication	is	validated	via	ECDSA	KeyPair	KATs	
• The	Key	Derivation	Function	is	validated	via	SHA	KATs	
• The	Key	Confirmation	function	is	validated	via	HMAC	KATs	

ECDH	Full	MQV	Key	
Agreement	Scheme	
(KAS)	KAT	

Exercises	a	set	of	Known	Answer	Tests	(KATs)	adapted	from	the	ECDH	
test	vectors	published	by	NIST	in	the	KASVS	specification	(Reference	
[25])	featuring	the	Full	MQV	model	of	ECDH	covering	each	version	of	
the	underlying	prime-field	EC	(P-224,	P-256,	P-384	and	P-521).		Each	
test	run	includes	both	Initiator-side	and	Responder-side	functions.	
The	underlying	cryptographic	algorithms	used	during	ECDH	key	
agreement	are	fully	validated	via	individual	POSTs:	

• ECC	point	multiplication	is	validated	via	ECDSA	KeyPair	KATs	
• The	Key	Derivation	Function	is	validated	via	SHA	KATs	
• The	Key	Confirmation	function	is	validated	via	HMAC	KATs	

XTS	Encrypt/Decrypt	
KAT	

Exercises	a	set	of	Known	Answer	Tests	(KATs)	extracted	from	the	XTS	
test	vectors	published	by	NIST	in	the	XTSVS	specification	(Reference	
[19]).		Both	formats	specified	for	the	tweak	value	input	(128-bit	
hexadecimal	string	or	64-bit	Data	Unit	Sequence	Number)	are	being	
tested	with	various,	non-trivial	Data	Unit	bit	sizes	in	encrypt	and	
decrypt	mode.		
The	comprehensive	XTS	KATs	implicitly	provide	assurance	about	the	
validity	of	the	underlying	AES	cryptographic	algorithms.	

KW/KWP	
Encrypt/Decrypt	KAT	

Exercises	a	set	of	Known	Answer	Tests	(KATs)	extracted	from	KW	and	
KWP	test	vectors	published	by	NIST	with	the	Key	Wrap	Validation	
System	(KWVS)	specification	(Reference	[20]).		All	three	encryption	
modes	are	tested	for	KW	and	KWP,	corresponding	to	AES	key	sizes	of	
128,	192	and	256	bits.		Also,	the	underlying	AES	block	cipher	is	tested	
in	either	forward	direction	or	inverse	direction	during	KW/KWP	
encryption.		Two	non-trivial	test	vectors	are	exercised	for	each	
combination	of	AES	key	size,	KW/KWP	and	forward/inverse	block	
cipher.	
The	comprehensive	KW/KWP	KATs	implicitly	provide	assurance	about	
the	validity	of	the	underlying	AES	cryptographic	algorithms.	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	40	of	44	
	

Test	 Description	
KBKDF	KAT	 Exercises	a	set	of	Known	Answer	Tests	(KATs)	extracted	from	KDF	test	

vectors	published	by	NIST	with	the	Key	Derivation	using	
Pseudorandom	Functions	(SP800-108)	Validation	System	(KBKDFVS)	
(Reference	[23]).		Both	CMAC	and	HMAC	algorithms	are	exercised	as	
underlying	pseudo-random	function	(PRF).		For	each	PRF,	SP800-108	
specifies	three	modes	of	key	derivation	from	a	set	of	inputs:	Counter	
Mode	(CTR),	FeedBack	Mode	(FB)	and	Double-Pipeline	Iteration	Mode	
(DPI),	which	are	all	represented	during	a	KDF	self-test	run.		At	least	one	
non-trivial	test	case	has	been	included	for	each	input	parameter	
combination	specified	in	KBKDFVS,	adding	up	to	12	KDF	CTR	tests,	32	
KDF	FB	tests	and	16	KDF	DPI	tests.	

PBKDF	KAT	 The	comprehensive	HMAC	KATs	implicitly	provide	assurance	about	the	
validity	of	the	Password-Based	Key	Derivation	Function	(PBKDF)	as	
recommended	in	IAW	NIST	SP	800-132	(Reference	[11]).		There	is	
neither	a	Validation	System	in	place,	nor	sample	test	vectors	published	
by	CAVP	for	the	PBKDF	algorithm,	as	of	January	2017.	
	

Table	10	–	Module	Power-On	Self-Tests	

Test	 Description	
ECC	KAS	(FullUnified,	
FullMQV)	Conditional	
Pair-Wise	Consistency	
Self-Test	

The	ECC	KAS	implementation	provides	built-in	assurance	(verification)	
of	the	arithmetic	validity	of	each	newly	generated	key	pair	by	
performing	a	pair-wise	consistency	self-test	where	the	key	pair	is	used	
in	conjunction	with	a	second	newly	generated	compatible	key	pair	to	
calculate	shared	values	for	both	sides	of	the	key	agreement	algorithm	
such	that	if	the	resulting	shared	values	are	not	equal	the	self-test	fails.	
Every	invocation	of	ECC	KAS	involves	(within	the	class	constructors)	a	
verification	of	the	arithmetic	validity	of	the	selected	set	of	ECC	domain	
parameters	(Reference	[15],	Section	5.5.2).	
The	ECC	KAS	implementation	performs	a	full	ECC	public	key	validation	
each	time	such	a	key	is	being	used	where	each	side	verifies	both	own	
and	opposite	static	public	keys,	each	side	verifies	opposite	side’s	
ephemeral	public	key	(Reference	[15],	Section	5.6.2).	
Also,	during	key	agreement,	each	side	renews	its	assurance	of	
possessing	the	correct	private	key	by	using	the	Key	Regeneration	
method	(Reference	[15],	Section	5.6.3),	while	the	ephemeral	
(generated)	private	key	is	subjected	to	the	constraints	specified	in	
Reference	[15],	Section	5.6.1.2.		

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	41	of	44	
	

Test	 Description	
ECDSA	Conditional	
Pair-Wise	Consistency	
Self-Test	

The	ECDSA	implementation	provides	built-in	assurance	(verification)	of	
the	arithmetic	validity	of	each	newly	generated	key	pair	by	performing	
a	pair-wise	consistency	self-test	where	the	key	pair	is	used	to	generate	
and	verify	a	digital	signature	such	that	if	the	digital	signature	cannot	be	
verified	the	self-test	fails.	
Every	invocation	of	ECDSA	involves	(within	the	class	constructors)	a	
verification	of	the	arithmetic	validity	of	the	selected	set	of	ECC	domain	
parameters.	
The	ECDSA	implementation	performs	an	ECC	public	key	validation	each	
time	such	a	key	is	used	during	digital	signature	generation	and	
verification.		

Table	11	–	Module	Conditional	Self-Tests		

2.9.1. Invoking	Self-Tests	
The	Cryptographic	Officer	operator	invokes	the	POST	automatically	by	loading	the	Module.		During	load	
the	operational	environment	executes	the	following	Module	Default	Entry	Point	(DEP)	automatically,	
which	invokes	the	self-tests.	The	Module	does	not	rely	on	any	other	external	service	to	initiate	the	POST	
and	all	data	output	via	the	data	output	interface	is	inhibited	when	the	POST	is	performed.		The	POST	
may	be	invoked	automatically	at	any	time	by	power-cycling	the	operational	environment	and	reloading	
the	Module.	

Dynamic	Link	Library	(DLL)	Default	Entry	Point	
	

BOOL APIENTRY DLLMain(HMODULE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved)

Shared	Object	(SO)	Default	Entry	Point	
	
	 void __attribute__((constructor)) runModulePOST(void)

2.9.2. Self-Tests	Results	
Upon	successful	self-test	completion,	the	Module	will	complete	its	initialization	and	transition	to	the	idle	
operational	state.		Subsequent	Module	self-tests	are	exercised	automatically	when	any	Suite	B	
cryptographic	algorithms	are	called	by	the	operator,	either	for	communications	encryption/decryption,	
data	encryption/decryption,	and/or	during	key	establishment.		In	the	event	the	Software	Integrity	
and/or	KAT	self-test	fail,	the	Module	will	not	complete	loading	and	will	transition	to	the	error	state	and	
a	specific	error	code	will	be	returned	indicating	which	self-test	has	failed.		The	Module	will	not	provide	
any	cryptographic	services	while	in	this	error	state.		Recovery	from	the	error	state	is	possible	by	power-
cycling	the	operational	environment	and	reloading	the	Module.	

Self-Test	 Error	Code	
Software	Integrity		 441,	444	
GCM	Encrypt	 2100	+	Test	Count	
GCM	Decrypt	 2200	+	Test	Count	
SHA	 2300	+	Test	Count	
HMAC	 2400	+	Test	Count	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	42	of	44	
	

Self-Test	 Error	Code	
ECDSA	Key	 2800	+	Test	Count	
ECDSA	SigGen	 3300	+	Test	Count	
ECDSA	SigVer	 3400	+	Test	Count	
KAS	Full	Unified	 2500	+	Test	Count	(combined	indicator	

of	the	EC	type	and	failing	sub-test)	
KAS	Full	MQV	 3000	+	Test	Count	
XTS	Encrypt	 2600	+	Test	Count	
XTS	Decrypt	 2700	+	Test	Count	
KW	Encrypt	 3100	+	Test	Count	
KW	Decrypt	 3200	+	Test	Count	
KBKDF	 3500	+	Test	Count	

Table	12	–	Module	Self-Test	Error	Codes	

2.10. Design	Assurance	
The	Module	meets	the	requirements	of	the	FIPS	140-2	Security	Level	1	specification	and	provides	the	
following	Cryptographic	Officer	guidance	and	User	guidance.	
	
The	Cryptographic	Officer	is	responsible	for	manually	installing	the	Module	on	the	operational	
environment	and	ensuring	FIPS	mode	of	operation	as	described	in	Section	2.1.2.		Also,	the	Cryptographic	
Officer	is	responsible	for	initializing	the	Module	causing	the	POST	to	run	automatically	as	described	in	
Section	2.9.	
	
The	User	operator	is	responsible	for	confining	method	calls	to	only	FIPS	140-2	approved	security	
functions	as	listed	in	Table	2	when	calling	the	Module	API	as	well	as	confining	method	calls	to	a	FIPS	
140-2	approved	DRBG	from	the	operational	environment	as	listed	in	Section	2.6.	

2.11. Mitigation	of	Other	Attacks	
The	Module	has	not	been	designed	to	mitigate	any	specific	attacks	outside	the	scope	of	the	FIPS	140-2	
requirements.		The	Module	resides	within	a	FIPS	140-2	operational	environment,	which	provides	an	
additional	layer	of	protection	to	attacks	of	the	Module.	

	 	

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	43	of	44	
	

3. Referenced	Documents	
[1] FIPS	Publication	197,	The	Advanced	Encryption	Standard	(AES),	U.S.	DoC/NIST,	November	26,	2001,	

National	Institute	of	Standards	and	Technology,	[Web	page],	
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf	

[2] NIST	Special	Publication	800-38A,	Recommendation	for	Block	Cipher	Modes	of	Operation:	Methods	
and	Techniques,	December	2001,	[Web	page],		
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf	

[3] NIST	Special	Publication	800-38B,	Recommendation	for	Block	Cipher	Modes	of	Operation:	The	
CMAC	Mode	for	Authentication,	May	2005,	National	Institute	of	Standards	and	Technology,	[Web	
page],	http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf	

[4] NIST	Special	Publication	800-38D,	Recommendation	for	Block	Cipher	Modes	of	Operation:	
Galois/Counter	Mode	(GCM)	and	GMAC,	November	2007,	National	Institute	of	Standards	and	
Technology,	[Web	page],	http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf	

[5] NIST	Special	Publication	800-38E,	Recommendation	for	Block	Cipher	Modes	of	Operation:	the	XTS-
AES	Mode	for	Confidentiality	on	Storage	Devices,	January	2010,	National	Institute	of	Standards	and	
Technology,	[Web	page],	http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf	

[6] NIST	Special	Publication	800-38F,	Recommendation	for	Block	Cipher	Modes	of	Operation:	Methods	
of	Key	Wrapping,	December	2012,	National	Institute	of	Standards	and	Technology,	[Web	page],	
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf	

[7] RFC	5649,	Advanced	Encryption	Standard	(AES)	Key	Wrap	with	Padding	Algorithm,	August	2009,	
Network	Working	Group,	[Web	page],	https://tools.ietf.org/html/rfc5649	

[8] FIPS	Publication	180-4,	Secure	Hash	Standard	(SHS),	August	2015,	National	Institute	of	Standards	
and	Technology,	[Web	page],	http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf	

[9] FIPS	Publication	198-1,	The	Keyed-Hash	Message	Authentication	Code	(HMAC),	July	2008,	National	
Institute	of	Standards	and	Technology,	[Web	page],		
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf	

[10] NIST	Special	Publication	800-108,	Recommendation	for	Key	Derivation	Using	Pseudorandom	
Functions,	October	2009,	National	Institute	of	Standards	and	Technology,	[Web	page],		
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf	

[11] NIST	Special	Publication	800-132,	Recommendation	for	Password-Based	Key	Derivation,	December	
2010,	National	Institute	of	Standards	and	Technology,	[Web	page],		
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf	

[12] FIPS	Publication	186-4,	Digital	Signature	Standard	(DSS),	July	2013,	National	Institute	of	Standards	
and	Technology,	[Web	page],	http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf		

[13] ANS	X9.62-2005:	Public	Key	Cryptography	for	the	Financial	Services	Industry:	The	Elliptic	Curve	
Digital	Signature	Algorithm	(ECDSA),	November	2005	

[14] NIST	Special	Publication	800-131A,	Transitions:	Recommendation	for	Transitioning	the	Use	of	
Cryptographic	Algorithms	and	Key	Lengths,	January	2011,	National	Institute	of	Standards	and	
Technology,	[Web	page],	http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf

[15] NIST	Special	Publication	800-56A,	Recommendation	for	Pair-Wise	Key	Establishment	Schemes	Using	
Discrete	Logarithm	Cryptography,	Revision	2,	May	2013,	National	Institute	of	Standards	and	
Technology,	[Web	page],		
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf		

[16] The	Advanced	Encryption	Standard	Algorithm	Validation	Suite	(AESAVS),	November	15,	2002,	
National	Institute	of	Standards	and	Technology,	[Web	page],	
http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf		

KeyW	Corporation	 	 Suite	B	Cryptographic	Module	FIPS	140-2	Non-Proprietary	Security	Policy	
Advanced	Cyber	Operations	Sector	 KXD002	

	

Page	44	of	44	
	

[17] The	CMAC	Validation	System	(CMACVS),	Updated	August	23,	2011,	National	Institute	of	Standards	
and	Technology,	[Web	page],	http://csrc.nist.gov/groups/STM/cavp/documents/mac/CMACVS.pdf		

[18] The	Galois/Counter	Mode	(GCM)	and	GMAC	Validation	System	(GCMVS),	National	Institute	of	
Standards	and	Technology,	Updated:	August	30,	2012,	[Web	page],	
http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmvs.pdf

[19] The	XTS-AES	Validation	System	(XTSVS),	Updated:	September	5,	2013,	National	Institute	of	
Standards	and	Technology,	[Web	page],	
http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSVS.pdf	

[20] The	Key	Wrap	Validation	System	(KWVS),	June	20,	2014,	National	Institute	of	Standards	and	
Technology,	[Web	page],	http://csrc.nist.gov/groups/STM/cavp/documents/mac/KWVS.pdf		

[21] The	Secure	Hash	Algorithm	Validation	System	(SHAVS),	Updated:	May	21,	2014,	National	Institute	
of	Standards	and	Technology,	[Web	page],	
http://csrc.nist.gov/groups/STM/cavp/documents/shs/SHAVS.pdf	

[22] The	Keyed-Hash	Message	Authentication	Code	Validation	System	(HMACVS),	Updated:	July	23,	
2012,	National	Institute	of	Standards	and	Technology,	[Web	page],	
http://csrc.nist.gov/groups/STM/cavp/documents/mac/HMACVS.pdf	

[23] Key	Derivation	using	Pseudorandom	Functions	(SP	800-108)	Validation	System	(KBKDFVS),	Updated	
January	4,	2016,	National	Institute	of	Standards	and	Technology,	[Web	page],	
http://csrc.nist.gov/groups/STM/cavp/documents/KBKDF800-108/kbkdfvs.pdf	

[24] The	FIPS	186-4	Elliptic	Curve	Digital	Signature	Algorithm	Validation	System	(ECDSA2VS),	Updated:	
March	18,	2014,	National	Institute	of	Standards	and	Technology,	[Web	page],	
http://csrc.nist.gov/groups/STM/cavp/documents/dss2/ecdsa2vs.pdf	

[25] The	Key	Agreement	Schemes	Validation	System	(KASVS),	Updated	May	22,	2014,	National	Institute	
of	Standards	and	Technology,	[Web	page],	
http://csrc.nist.gov/groups/STM/cavp/documents/keymgmt/KASVS.pdf	

[26] NIST	Special	Publication	800-63-2,	Electronic	Authentication	Guideline,	August	2013,	National	
Institute	of	Standards	and	Technology	[Web	page],	
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf		

[27] NIST	Special	Publication	800-118,	Guide	to	Enterprise	Password	Management	(Draft),	April	2009,	
National	Institute	of	Standards	and	Technology,	[Web	page],	
http://csrc.nist.gov/publications/drafts/800-118/draft-sp800-118.pdf		

